
Kanban agile planning with
Burn-Down chart

Three simple truth:

It is impossible to gather all the requirements at the
beginning of a project.
Whatever requirements you do gather are guaranteed to
change.
There will always be more to do than time and money will
allow.

The agile team should have a strategy for dealing with any
changes in the process. There are several problems with a
static plans:

Our team changes – some of the lead developers can leave
to another project of great strategic importance (they
was used to say about our project like this). Next, we
realize that, we aren’t going as fast as we had thought.
Halfway through the project, customer discovers what he
really want.
… running out of time.

https://blogs.deusto.es/master-informatica/kanban-agile-planning-with-burn-down-chart/
https://blogs.deusto.es/master-informatica/kanban-agile-planning-with-burn-down-chart/
https://blogs.deusto.es/master-informatica/wp-content/uploads/sites/22/2015/12/BurndownChartPlan.png

In a rush to meet the new deadline, testing gets cut, the
existing team need to cancel the vacations, etc., etc., it
becomes another late, over-budget and failed IT project.

To deal with this realities we need a different way of
planning things that will deliver great value to our
customers, the plan that is visible-open-honest, lets us make
promises we can keep and enables us to adopt changes when
necessary.

Agile planning is measuring the speed that a team can run the
customer requirements into working, production ready software
and estimate when they will done.

The to-do list or customer requirements will be called user-
stories. The team’s velocity is the speed of converting the
user-stories into working software. We have to use team’s
velocity to measure our team’s productivity to set the

https://blogs.deusto.es/master-informatica/wp-content/uploads/sites/22/2015/12/tree_swing_development_requirements.jpg

expectations about software delivery to the customer for the
future.

Every user-story should be sized based on its difficulty and
the requirement. It is good to use relative or point based
systems for sizing. Let’s say small (1pts), medium is (3pts)
and large is (5pts).

Let’s start creating our agile plan:

Step 1: Creating release story list. This is a logical
grouping of user-stories that we can deliver to the customer
after some iteration. Each logical grouping is estimated by
team and can be prioritized by customer. After grouping the
user-stories we can have the number of releases. Each release
period can be in a range of 1 to 6 month. Each release will
have several iterations which each of them can continue from
1-2 weeks.

Step 2: Sizing. Every user-story needs to be estimated and
voted by the team, customers assistance would be great,
because when he wants to add something in the feature, more or
less he can have small imagination of how can it affect to the
delivering process. Once we have our user-stories gathered and
estimated we know about total points of the project.

Step 3: Prioritizing. We have to get important staff first.
Together with customer and team it is good to sort the items
from most important to less important. The risky ones should
be managed differently.

Step 4: Estimating the team’s velocity. For each iteration
the team’s velocity should be estimated based on current
situation and previous delivered velocity. So for the first
iteration the team’s velocity should be guessed.

Team velocity = completed user-stories / iteration

Step 5: Delivering. We can deliver by specific iteration

completed dates or by the set of the features. Every iteration
the team will complete (burns) amount of user-stories or
points and by its average we can estimate what the team can
deliver in which iteration.

Burn-Down chart:

This kind of chart is extremely useful to visualize the
process of how quickly the team completing the customer’s
user-stories, in other words burning through our customer’s
requirements. It will help us to tell how much work has been
done, how much work remains, the team’s velocity and our
expected completion dates.

Let’s discover most of this things in example below. Imagine
that our personal work in audit contains 53 hours of work that
we should release at 1st December.

Burn-down chart in release date

From this chart we can see that the release was planning to
happen on 1 of December but it didn’t happened. That can
happen because of user-story estimations, team’s velocity or
other reasons. The table with flow status on release date
shows how many more iterations need to make the release
happen.

Burn-down chart makes all the events in our project visible.
If the customer decide to add something more, we can instantly
see the impact of it to the delivery dates. Project’s burn-
down chart shows the flow like it is. This is highly visible
part of the planning.

