Archivo de la etiqueta: kafka

Tecnologías de ingesta de datos en proyectos «Big Data» en tiempo real

Cuando hablamos de las etapas que componían un proyecto de Big Data, y sus diferentes paradigmas para afrontarlo, una cuestión que cité fue la siguiente:

Si antes decíamos que un proyecto “Big Data” consta de cuatro etapas –(1) Ingestión; (2) Procesamiento; (3) Almacenamiento y (4) Servicio-, con este enfoque, nada más ser “ingestados”, son transferidos a su procesamiento. Esto, además, se hace de manera continua. En lugar de tener que procesar “grandes cantidades”, son, en todo momento, procesadas “pequeñas cantidades”.

Hadoop, que marcó un hito para procesar datos en batch, dejaba paso a Spark, como plataforma de referencia para el análisis de grandes cantidades de datos en tiempo real. Y para que Spark traiga las ventajas que solemos citar (100 vez más rápido en memoria y hasta 10 veces más en disco que Hadoop y su paradigma MapReduce), necesitamos sistemas ágiles de «alimentación de datos». Es decir, de ingesta de datos.

Es el proceso por el cual los datos que se obtienen en tiempo real van siendo capturados temporalmente para un posterior procesamiento. Ese momento «posterior» es prácticamente instantáneo a efectos de escala temporal. Esto se está produciendo mucho, por ejemplo, en el mundo de los sensores y el  IoT (Internet of Things). No podemos lanzar alarmas en tiempo real si no contamos con una arquitectura como esta. Muchos sectores son ya los que están migrando a estas arquitecturas de ingesta de datos en un mundo en tiempo real.

Y es que el «tiempo real», el streaming, comienza ya desde la etapa de ingestión de datos. Tenemos que conectarnos a fuentes de datos en tiempo real, como decíamos, para permitir su procesamiento instantéano. En la era del Business Intelligence, e incluso en la era del «Big Data batch», los ETL eran los que permitían hacer estas cosas. Hemos hablado ya de su importancia. Sin embargo, son herramientas que en tiempo real, no ofrecen el rendimiento esperado, por lo que necesitamos alternativas.

ETL vs Spark (fuente: http://image.slidesharecdn.com/k2ionstoica-151028153637-lva1-app6892/95/spark-summit-eu-2015-revolutionizing-big-data-in-the-enterprise-with-spark-10-638.jpg?cb=1469144488)
ETL vs Spark (fuente: http://image.slidesharecdn.com/k2ionstoica-151028153637-lva1-app6892/95/spark-summit-eu-2015-revolutionizing-big-data-in-the-enterprise-with-spark-10-638.jpg?cb=1469144488)

Estas son el tipo de cosas que permiten hacer Spark y Storm, cuyo paradigma en tiempo real ya comentamos en su día. Aparecen, junto a ellos, una serie de tecnologías y herramientas que permiten implementar y dar sentido a todo este funcionamiento:

  • Flume: herramienta para la ingesta de datos en entornos de tiempo real. Tiene tres componentes principales: Source (fuente de datos), Channel (el canal por el que se tratarán los datos) y Sink (persistencia de los datos). Para entornos de exigencias en términos de velocidad de respuesta, es una muy buena alternativa a herramientas ETL tradicionales.
  • Kafka: sistema de almacenamiento distribuido y replicado. Muy rápido y ágil en lecturas y escrituras. Funciona como un servicio de mensajería y fue creado por Linkedin para responder a sus necesidades (por eso insisto tanto en que nunca estaríamos hablando de “Big Data” sin las herramientas que Internet y sus grandes plataformas ha traído). Unifica procesamiento OFF y ON, por lo que suma las ventajas de ambos sistemas (batch y real time). Es un sistema distribuido de colas, el más conocido actualmente, pero existen otros como RabbitMQ, y soluciones en la cloud como AWS Kinesis.
  • Sistemas de procesamiento de logs, donde podemos encontrar tecnologías como LogStash, Chukwa y Fluentd.

Con estas principales tecnologías en el menú, LogStash y Flume, se han convertido en las dos principales soluciones Open Source para lo que podríamos bautizar como «ETL en tiempo real». Es decir, para la necesidad de recoger datos en tiempo real. La ingesta de datos como etapa de un proyecto de Big Data.

Y, de este modo, nacen «packs tecnológicos» alternativos al ETL como es EFK, acrónimo de Elastic Search + Flume + Kibana. Se trata de una plataforma para procesar datos en tiempo real, tanto estructurados como no estructurados. Todo ello, con tecnologías Open Source, lo que podría venir a animar a  muchas empresas que lean esta noticia, y entiendan el valor que tiene esto para sus seguras necesidades (cada vez más) en tiempo real.

  • Elastic Search: motor de búsqueda, orientado a documentos, basado en Apache Lucene.
  • Flume: ejcución de procesos de extracción, transformación y carga de datos de manera eficiente.
  • Kibana: dashboards en tiempo real, procesando y aprovechando los datos en tiempo real indexados vía Elastich Search.

Con todo esto, quedarían esquemas tecnológicamente muy enriquecidos y útiles para necesidades de negocio como el que se presenta a continuación:

Proyectos Big Data en tiempo real (Fuente: http://www.slideshare.net/Stratio/meetup-es-efk)
Proyectos Big Data en tiempo real (Fuente: http://www.slideshare.net/Stratio/meetup-es-efk)

Como podéis apreciar, en estos ecosistemas, los ETL ya no cumplen la función que han venido desempeñando históricamente. Su rendimiento en tiempo real es realmente bajo. Por lo que tenemos que dar un paso más allá. E introducir nuevas tecnologías de ingestión de datos. Kakfa, Flume, Elastic Search, etc., son esas tecnologías. Si tu empresa está empezando a tener problemas con el datamart tradicional, o si la base de datos ya no da mucho más de sí, quizás en este ecosistema tecnológico tengamos la solución.

Nosotros, en nuestro Programa de Big Data, todo esto lo vemos durante 25 horas, montando una arquitectura en tiempo real que dé respuesta a las necesidades de empresas que cada vez necesitan más esto. Las tecnologías de ingesta de datos al servicio de las necesidades de negocios en tiempo real.

Paradigma tiempo real para sistemas Big Data (II)

(venimos de una serie de un artículo introductorio a los tres paradigmas, y de uno anterior hablando del paradigma batch)

Decíamos en el artículo anterior, que a la hora de procesar grandes volúmenes de datos existen dos principales enfoques: procesar una gran cantidad de datos por lotes o bien hacerlo, en pequeños fragmentos, y en «tiempo real». Parece, así, bastante intuitivo pensar cuál es la idea del paradigma en tiempo real que trataremos en este artículo.

Este enfoque de procesamiento y análisis de datos se asienta sobre la idea de implementar un modelo de flujo de datos en el que los datos fluyen constantemente a través de una serie de componentes que integran el sistema de Big Data que se esté implatando. Por ello, se le como como procesamiento «streaming» o de flujo. Así, en tiempos muy pequeños, procesamos de manera analítica parte de la totalidad de los datos. Y, con estas características, se superan muchas de las limitaciones del modelo batch.

Por estas características, es importante que no entendamos este paradigma como la solución para analizar un conjunto de grandes datos. Por ello, no presentan esa capacidad, salvo excepciones. Por otro lado, una cosa es denominarlo «tiempo real» y otra es realmente pensar que esto se va a producir en veradero tiempo tiempo. Las limitaciones aparecen por:

  • Se debe disponer de suficiente memoria  para almacenar entradas de datos en cola. Fíjense en la diferencia con el paradigma batch, donde los procesos de Map y Reduce podrían ser algo lentos, dado que escribían en disco entre las  diferentes fases.
  • La tasa de productividad del sistema debería ser igual o más rápida a la tasa de entrada de datos. Es decir, que la capacidad de procesamiento del sistema sea más ágil y eficiente que la propia ingesta de datos. Esto, de nuevo, limita bastante la capacidad de dotar de «instantaneidad al sistema».
Plataforma de analítica Big Data en tiempo real (Fuente: https://infocus.emc.com/wp-content/uploads/sites/8/2013/02/Real-time-Analytic-Platforms-Enable-New-Value-Creation-Opportunities.png)
Plataforma de analítica Big Data en tiempo real (Fuente: https://infocus.emc.com/wp-content/uploads/sites/8/2013/02/Real-time-Analytic-Platforms-Enable-New-Value-Creation-Opportunities.png)

Uno de los principales objetivos de esta nueva arquitectura es desacoplar el uso que se hacía de Hadoop MapReduce para dar cabida a otros modelos de computación en paralelo como pueden ser:

  • MPI (Message Passing Interface): estándar empleado en la programación concurrente para la sincronización de procesos ante la existencia de múltiples procesadores.
  • Spark: plataforma desarrollada en Scala para el análisis avanzado y eficiente frente a las limitaciones de Hadoop. Tiene la habilidad de mantener todo en memoria, lo que le da ratios de hasta 100 veces mayor rapidez frente a MapReduce. Tiene un framework integrado para implementar análisis avanzados. Tanto Cloudera, como Hortonworks, lo utilizan.

Y, con estos nuevos modelos, como hemos visto a lo largo de esta corta pero intensa historia del Big Data, aparecen una serie de tecnologías y herramientas que permiten implementar y dar sentido a todo este funcionamiento:

  • Flume: herramienta para la ingesta de datos en entornos de tiempo real. Tiene tres componentes principales: Source (fuente de datos), Channel (el canal por el que se tratarán los datos) y Sink (persistencia de los datos). Para entornos de exigencias en términos de velocidad de respuesta, es una muy buena alternativa a herramientas ETL tradicionales.
Flume (Fuente: http://blog.cloudera.com/wp-content/uploads/sites/8/2012/10/fig.png)
Flume (Fuente: http://blog.cloudera.com/wp-content/uploads/sites/8/2012/10/fig.png)
  • Kafka: sistema de almacenamiento distribuido y replicado. Muy rápido y ágil en lecturas y escrituras. Funciona como un servicio de mensajería y fue creado por Linkedin para responder a sus necesidades (por eso insisto tanto en que nunca estaríamos hablando de «Big Data» sin las herramientas que Internet y sus grandes plataformas ha traído). Unifica procesamiento OFF y ON, por lo que suma las ventajas de ambos sistemas (batch y real time). Funciona como si fuera un cluster.
Apache Kafka (Fuente: https://unpocodejava.files.wordpress.com/2012/12/image0019.jpg?w=780)
Apache Kafka (Fuente: https://unpocodejava.files.wordpress.com/2012/12/image0019.jpg?w=780)
  • Storm:  sistema de computación distribuido, por lo que se emplea en la etapa de análisis de datos (de la cadena de valor de un proyecto de Big Data). Se define como un sistema de procesamiento de eventos complejos (Complex Event Processing, CEP), lo que le hace ideal para responder a sistemas en los que los datos llegan de manera repentina pero continua. Por ejemplo, en herramientas tan habituales para nosotros como WhatsApp, Facebook o Twitter, así como herramientas como sensores (ante la ocurrencia de un evento) o un servicio financiero que podamos ejecutar en cualquier momento.

Vistas estas tres tecnologías, queda claro que la arquitectura resultante de un proyecto de tiempo real quedaría compuesto por Flume (ingesta de datos de diversas fuentes) –> Kafka (encolamos y almacenamos) –> Storm (analizamos).

Fuente: http://www.slideshare.net/Datadopter/the-three-generations-of-big-data-processing
Fuente: http://www.slideshare.net/Datadopter/the-three-generations-of-big-data-processing

Vistas todas estas características, podemos concluir que para proyectos donde el «tamaño» sea el *verdadero* problema, el enfoque Batch será el bueno. Cuando el «problema» sea la velocidad, el enfoque en tiempo real, es la solución a adoptar.

(continuará)