Archivo de la etiqueta: estadística

Comunicando los resultados de Big Data eficientemente

(Artículo escrito por Izaskun Larrea, alumna de la promoción de 2017 en el Programa en Big Data y Business Intelligence en Bilbao)

¡Hacer predicciones no es suficiente! Los científicos de datos eficaces saben explicar e interpretar sus resultados y comunicar los hallazgos con precisión a las partes interesadas para tomar decisiones empresariales. La visualización es el campo de investigación que estudia la comunicación efectiva de resultados cuantitativos vinculando percepción, cognición y algoritmos.  Es necesario aprender a reconocer, diseñar y utilizar visualizaciones efectivas.

Como Data Scientist debemos explorar las consideraciones éticas sobre el Big Data y cómo estas consideraciones están comenzando a influir en la política y en la sociedad. Tenemos limitaciones en el uso de la tecnología para proteger la privacidad y los códigos de conducta que emergen para guiar el comportamiento de los científicos de los datos.

Las inferencias estadísticas del Big Data, heterogéneos y ruidosos son inútiles si no puede comunicarlos a sus colegas, a sus clientes, a su administración y a todas las partes interesadas, parece ir paradójicamente empeorando. Pero la reproducibilidad no es sólo para los académicos: los científicos de datos que no pueden compartir, explicar y defender sus métodos para que otros puedan construir son difíciles de entender. La importancia de la investigación reproducible y cómo el cloud computing está ofreciendo nuevos mecanismos para compartir código, datos, entornos e incluso costos que son críticos para la reproducibilidad práctica.

comunicación Big Data

Últimamente, he trabajado en una serie de proyectos que requieren la recapitulación del Big Data para desarrollar materiales de comunicación que transmiten mensajes clave con claridad y precisión.

Si bien el tipo y la cantidad de datos, las áreas temáticas y el público objetivo de cada pieza de comunicaciones varían, cada proyecto implica el uso de los siguientes pasos para producir piezas de comunicaciones efectivas en el Big Data:

  1. Evaluar la exactitud de tus datos. Ya sea porque esté explorado en Internet, interpretando un informe técnico de 100 páginas, analizando los datos de demostración reportados por el usuario o resumiendo los resultados de un trabajo, es importante hacer preguntas sobre tus datos. ¿Tus fuentes proporcionan información conflictiva que es contraria a lo que esperabas? Si es así, haz un poco de investigación adicional para resolver estos problemas y excluir cualquier fuente no confiable.
  2. Analizar lo que dice la información – Ahora que sabes que tus datos son más precisos, es el momento de organizarlo en categorías lógicas. ¿Cuáles son los principales bloques de información con los que se trata? ¿Tienes información cualitativa y cuantitativa? Una vez que tengas una mejor comprensión de la profundidad y amplitud de tus datos, puedes resumir con mayor facilidad los puntos clave de cada agrupación de datos.
  3. Determinar lo que es más importante para tu audiencia – Es fácil resumir todos los datos con los que estás trabajando, pero algunos datos son más importantes para tu audiencia que otros. ¿Alguno de tus puntos clave fue sorprendente o nuevo? Trate de encontrar tus puntos clave, preguntarse qué es significativo y por qué cada punto importa. Si tú no puedes llegar a una respuesta, es probable que el punto clave no debe ser incluido.
  4. Identificar el formato más significativo para la presentación de tus datos – Para aumentar la eficacia de tu análisis, este paso debe estar realmente en tu mente durante todo el proceso del análisis de datos. Es importante determinar qué formato de comunicaciones será más útil para tu audiencia, para que tu proyecto inspire acción en lugar de simplemente una exposición de información masiva. ¿Es probable que tu público realice físicamente un resumen ejecutivo o una hoja informativa? ¿Es probable que eliminen las páginas o el capítulo de un informe que más se relaciona con tu investigación? El propósito de la información debe determinar el formato de tu informe. Y por supuesto, no olvides que vivimos en una edad muy visual. Debemos de usar señales visuales para comunicar temas complejos.

Un análisis de datos eficaz requiere hacer el trabajo desde abajo para que nadie más en la organización se atasque con el Big Data. Tu audiencia no tendrá tiempo para luchar para determinar qué información es más importante. Es tu trabajo interpretar los datos para ellos.

Cuándo y por qué puede fallar un modelo predictivo

Las pasadas elecciones americanas, han vuelto a poner encima de la mesa un debate que parece ya clásico: los (supuestos) fallos de las encuestas. El debate también salió con la infravaloración que se hizo a la victoria del Partido Popular el pasado 26-J, el “sorpasso” que las encuestas vaticinaron o en el Brexit.

Las encuestas, como modelos que son, son una aproximación a la realidad. Lo que suele fallar en esos modelos de aproximación no son tanto los métodos predictivos empleados, sino cómo se pondera la idea de la incertidumbre. Y es que estos ejercicios de adelantarnos a lo que puede ocurrir en un futuro (predecir), nunca borran ni eliminan la incertidumbre. El mundo es así, no es lineal.

Lo que ocurre es que nuestra mente no funciona bien bajo incertidumbre, por lo que la encanta utilizar las predicciones como una idea cerrada y segura. Así manejamos la información con más facilidad, reducimos nuestra fatiga cognitiva,  y podemos conversar sobre los temas con más facilidad con la gente.

Pero los modelos predictivos, como decía, no son tan sencillos. Ni los modelos estadísticos para tratar de hacer una previsión de los resultados electorales, ni los que tratan de predecir qué ocurrirá en la economía o con la meteorología. Siempre habrá incertidumbre.

Miremos el caso de las elecciones americanas para ilustrar la idea de cuándo y por qué puede fallar un modelo predictivo. Cuando hablamos del Teorema de Bayes, ya dijimos que predecir consta de tres partes constituyentes:

  1. Modelos
  2. Calidad de datos
  3. Juicio humano

Vayamos por partes. Los modelos. Ningún modelo es perfecto, el famoso aforismo de la estadística (“All models are wrong“) de George Box que citó en este artículo de 1976. A sabiendas que la ciencia política llevada décadas estudiando el campo, que hay gente realmente buena detrás construyendo modelos predictivos (FiveThirtyEight, Predictwise, etc.), no tengo la sensación de que fuera un problema metodológico de captura de mecanismos -atributos, variables predictoras- de elección de presidente (comportamiento de los diferentes estados, variables económicas y sociales, momentum, ruido social, etc.).

No obstante, como señala este reportaje de New York Times, es posible y probable que los modelos no recogieran bien cómo Trump desplazó el debate a la derecha y ganó en zonas rurales el gran soporte urbano que tenía Clinton. Aquí juegan otros elementos (el mecanismo de asignación de electores), pero entiendo eso sí estaba recogido. Como veis, más incertidumbres que certezas. Pero esto es lo que tiene hacer modelos; a posteriori te das cuenta, pero a priori es difícil estimar las mejores variables a incorporar.

Modelo predictivo de fivethirtyeight.com
Modelo predictivo de fivethirtyeight.com

En segundo lugar, los datos en sí. De su calidad y su vital importancia, también hemos hablado mucho por aquí. Evidentemente, en un proceso electoral en el que cada vez los medios digitales tienen mayor protagonismo, es un candidato este eje a ser considerado. La falta de veracidad de las respuestas de las encuestas (no sea que alguien se entere que voy a votar a Trump, incluso un fallo de memoria, por las prisas con las que se suele responder), el sesgo de respuesta (te respondo a lo que tú me preguntas, no más), sesgos muestrales (¿cómo preguntar a todos a sabiendas de la ausencia de uso de medios digitales o telefónicos en muchos casos?, aquí es donde entraría el margen de error), etc. Es por todos estos problemas de los datos por los que cada vez hay más “cocina” o corrección de las respuestas por quién lo ha podido preguntar/hacer la encuesta. Por otro lado, no olvidemos la cada vez mayor importancia de las redes sociales, donde los efectos de red son difíciles de recoger todavía a nivel metodológico. Por todo esto, es probable que los datos que lleguen a los modelos, no sean los mejores en estos momentos. Y que haya mucho que mejorar aún en toda esta parte.

En tercer y último lugar, esta la interpretación de los resultados que ofrece un modelo. Es decir, el juicio humano. Como decíamos al comienzo, es difícil en ocasiones, en un modelo predictivo, explicar a la gente que todo lo que aquí se “modeliza” es una aproximación a una realidad mucho más complicada que lo que un modelo representa. Esa diferencia, ese gap, es lo que ponderamos con la incertidumbre. Como no sabemos lo que va a ocurrir con 100% de certeza, lo expresamos. Un intervalo de confianza del 95%, no garantiza, obviamente, nada. Este valor quiere decir que de cada 20 muestras sobre esa misma población (el electorado americano), 19 veces, el valor a predecir (el resultado electoral), estará contenido en el modelo. Solo se “fallará” (que tampoco es un término del todo correcto en este  contexto), en 1 de cada 20 ocasiones. ¿Puede ser este el caso de la victoria de Donald Trump o el resto de situaciones explicadas al comienzo? Es posible y probable.

Como ven, hacer un modelo predictivo no es un tarea sencilla. Por ello, es bueno manejar esta terminología básica de elementos críticos a considerar para saber muy bien lo que se está haciendo. En nuestros Programas de Big Data, por eso empezamos siempre hablando de modelado y calidad de datos, para luego empezar con la estadística y los modelos de aprendizaje supervisado y no supervisado (Machine Learning). No todo es software, claro.

¿Qué hace un “Científico de datos” y por qué es una profesión tan sexy?

Mucho se ha escrito la que aparentemente va a ser la profesión más sexy del Siglo XXI. Más allá de titulares tan rimbonbantes (digo yo, que quedan muchas cosas todavía que inventar y hacer en este siglo :-), lo que viene a expresar esa idea es la importancia que va a tener un científico de datos en una era de datos ubicuos, coste de almacenamiento, procesamiento y transporte prácticamente cero y de constante digitalización. La práctica moderna del análisis de datos, lo que popularmente y muchas veces erróneamente se conoce como “Big Data”, se asienta sobre lo que es la “Ciencia del Dato” o “Data Science”.

En 2012, Davenport y Patil escribían un influyente artículo en la Harvard Business Review en la que exponían que el científico de datos era la profesión más sexy del Siglo XXI. Un profesional que combinando conocimientos de matemáticas, estadística y programación, se encarga de analizar los grandes volúmenes de datos. A diferencia de la estadística tradicional que utilizaba muestras, el científico de datos aplica sus conocimientos estadísticos para resolver problemas de negocio aplicando las nuevas tecnologías, que permiten realizar cálculos que hasta ahora no se podían realizar.

Y va ganando en popularidad en los últimos años debido sobre todo al desarrollo de la parte más tecnológica. Las tecnologías de Big Data empiezan a posibilitar que las empresas las adopten y empiecen a poner en valor el análisis de datos en su día a día. Pero, ahí, es cuando se dan cuenta que necesitan algo más que tecnología. La estadística para la construcción de modelos analíticos, las matemáticas para la formulación de los problemas y su expresión codificada para las máquinas, y, el conocimiento de dominio (saber del área funcional de la empresa que lo quiere adoptar, el sector de actividad económica, etc. etc.), se tornan igualmente fundamentales.

Pero, si esto es tan sexy ¿qué hace el científico de datos? Y sobre todo, ¿qué tiene que ver esto con el Big Data y el Business Intelligence? Para responder a ello, me gusta siempre referenciar en los cursos y conferencias la representación en formato de diagrama de Venn que hizo Drew Conway en 2010:

Diagrama de Venn del
Diagrama de Venn del “Científico de datos” (Fuente: Drew Conway)

Como se puede apreciar, se trata de una agregación de tres disciplinas que se deben entender bien en este nuevo paradigma que ha traído el Big Data:

  • Hacking skills” o “competencias digitales con pensamiento computacional: sé que al traducirlo al Español, pierdo mucho del significado de lo que expresa las “Hacking Skills”. Pero creo que se entiende bien también lo que quieren decir las “competencias digitales”. Estamos en una época en la que constante “algoritmización” de lo que nos rodea, el pensamiento computacional que ya hay países que han metido desde preescolar, haga que las competencias digitales no pasen solo por “saber de Ofimática” o de “sistemas de información”. Esto va más de tener ese mirada hacia lo que los ordenadores hacen, cómo procesan datos y cómo los utilizan para obtener conclusiones. Yo a esto lo llamo “Pensamiento computacional”, como una (mala) traducción de “Computation thinking”, que junto con las competencias digitales (entender lo que hacen las herramientas digitales y ponerlo en práctica), me parecen fundamentales.
  • Estadística y matemáticas: en primer lugar, la estadística, que es una herramienta crítica para la resolución de problemas. Nos dota de unos instrumentos de trabajo de enorme valor para los que trabajamos con problemas de la empresa. Y las matemáticas, ay, qué decir de la ciencia formal por antonomasía, la que siguiendo razonamientos lógicos, nos permite estudiar propiedades y relaciones entre las variables que formarán parte de nuestro problema. Si bien las matemáticas se la ha venido a conocer como la ciencia exacta, en la estadística, nos gusta más jugar con intervalos de confianza  y la incertidumbre. Pero, por sus propias particularidades, se nutren mutuamente, y hace que para construir modelos analíticos que permitan resolver los problemas que las empresas y organizaciones nos planteen, necesitemos ambas dos.
  • Conocimiento del dominio: para poder diseñar y desarrollar la aplicación del análisis masivo de datos a diferentes casos de uso y aplicación, es necesario conocer el contexto. Los problemas se deben plantear acorde a estas características. Como siempre digo, esto del Big Data es más una cuestión de plantar bien los problemas que otra cosa, por lo que saber hacer las preguntas correctas con las personas que bien conocen el dominio de aplicación es fundamental. Por esto me suelo a referir a “que hay tantos proyectos de Big Data como empresas”.  Cada proyecto es un mundo, por lo que cuando alguien te cuente su proyecto, luego relativízalo a tus necesidades 😉

Estas tres cuestiones (informática y computación, métodos estadísticos y áreas de aplicación/dominio), también fueron citadas por William S. Cleveland en 2001 en su artículo “Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics“. Por lo tanto, no es una concepción nueva.

Este Diagrama de Venn ha ido evolucionando mucho. Uno de los que más me gustan es éste, que integra las ciencias sociales. Nuestro Programa Experto en Análisis, Investigación y Comunicación de Datos precisamente busca ese enfoque.

La cuarta Burbuja de la Ciencia de Datos: Ciencias Sociales (Fuente: http://datascienceassn.org/content/fourth-bubble-data-science-venn-diagram-social-sciences)
La cuarta Burbuja de la Ciencia de Datos: Ciencias Sociales (Fuente: http://datascienceassn.org/content/fourth-bubble-data-science-venn-diagram-social-sciences)

Por qué hablamos del Business Analytics y no solo de Business Intelligence

El Business Intelligence (Inteligencia de Negocios) es un conjunto de métodos y técnicas que han venido empleándose desde hace años en diferentes sectores para ayudar en la toma de decisiones. Básicamente consiste en el procesamiento de datos para obtener información resumida y sintetizada de todos ellos.

Lo que ha ocurrido es que en los últimos años ha aparecido un nuevo paradigma, que hemos venido a denominar Big Data. Un paradigma que se puede describir por sus cinco elementos que lo caracterizan: Volumen (gran cantidad de datos), Variedad (diferentes formatos, estructuras, etc. de datos), Velocidad (gran velocidad a la que los generemos), Variabilidad (datos no muy estáticos, sino que cambian con cierta frecuencia) y Valor (el gran potencial de generación de valor que tienen para las organizaciones).

Las cinco V del Big Data (Fuente: http://boursinos.gr/wp-content/uploads/2014/02/bigdata-v5-lens.jpg)
Las cinco V del Big Data (Fuente: http://boursinos.gr/wp-content/uploads/2014/02/bigdata-v5-lens.jpg)

Este nuevo paradigma, junto con los métodos avanzados de procesamiento estadístico y matemático (incertidumbre y exactitud) de datos, enriquecen y permiten una toma de decisiones aún más estratégica e informada. Ahora, una empresa no solo puede resumir el pasado (enfoque Business Intelligence), sino que también puede establecer relaciones y comparaciones entre variables para tratar de adelantarse al futuro (Business Analytics).

Business Analytics vs. Business Intelligence (Fuente: https://wiki.smu.edu.sg/is101_2012/img_auth.php/e/ec/Business_Analytics.jpg)
Business Analytics vs. Business Intelligence (Fuente: https://wiki.smu.edu.sg/is101_2012/img_auth.php/e/ec/Business_Analytics.jpg)

Es decir, que evolucionamos del Business Intelligence tradicional al Business Analytics gracias al nuevo paradigma que trae el Big Data y los métodos de procesamiento de datos más avanzados. Con estos servicios de Business Analytics, básicamente, a una compañía, lo que podemos ofrecerle son dos tipos de explotaciones de datos:

  • Informar: ver lo que ha ocurrido en el pasado, y tomar decisiones reactivas (Business Intelligence).
  • Predecir: inferir lo que puede ocurrir en el pasado, y tomar decisiones proactivas (Business Analytics)

A partir de estos principios básicos de lo que el Business Analytics es, ya pueden ustedes imaginarse el gran potencial que tiene. Como decía al comienzo, el Business Analytics trae una inteligencia a los negocios enriquecido a través de modelos estadísticos que permiten descubrir nuevas estructuras, patrones, relaciones entre variables, etc. Esto, sumado a la era de la ingente cantidad de datos, hace que las compañías se puedan beneficiar de todo ello en muchas áreas: sanidad, educación, marketing, producción, logística, etc.

Para que se hagan ustedes a la idea, y puedan llevarlo a un plano práctico de su día a día, puede responder a preguntas como:

  • ¿Cómo puedo descubrir más información relevante sobre mis clientes? Datos como los drivers que le llevan realmente a comprar, cómo se relacionan mis clientes entre ellos, qué opiniones son las que han sido clave para la toma de decisión de compra, etc.
  • ¿Qué pasaría si cambio el precio de mis productos/servicios? Es decir, disponer de un análisis de sensibilidad de una variable (precio) respecto a su impacto en otra (ventas totales de ese producto o sobre otros), de manera que puedo ver la relación entre las mismas.
  • ¿Cómo puedo reducir la tasa de abandonos de mis clientes? Es decir, construir un modelo de propensión a la fuga, para saber qué puntos o acciones son las que pueden llevar a un cliente a abandonarme. De esta manera, a futuro, tendría más probabilidad de encontrar clientes que pudieran marcharse de la compañía.
  • ¿Cómo puedo identificar a los clientes más rentables? No desde el punto de vista de las ventas totales, sino del valor que extraigo de cada uno de ellos (entendiendo valor como margen de beneficio)
  • ¿Cómo puedo detectar fraude? Analizando el histórico de valores que van tomando las variables para los casos de éxito (no hay fraude, se paga a tiempo, no hay insolvencias, etc.) y los de fracaso (fraudes, impagos, etc.), se pueden construir modelos que relacionen las variables que frecuentemente están asociados a los casos de fracaso, y así poder anticiparse a futuro.
  • etc.

Para poder hacer esto, como pueden imaginarse, los métodos de descubrimiento de información resultan fundamentales. Bueno, partiendo de la base que lo más importante es que tengamos bien preprocesada nuestra información, porque sin eso, cualquier algoritmo fallará. Esto es precisamente lo que hablamos al introducir los ETL y la importancia de la calidad de datos y su preprocesado.

Los métodos a utilizar son variados y a veces uno no sabe cuál de ellos va a dar mejores resultados o cuál de ellos se adecúa a lo que yo realmente estoy buscando. En el blog Peekaboo publicaron un cheat sheet (una “chuleta” de toda la vida) que utilizo siempre en los cursos introductorios a Business Analytics, dado que es bastante expreisva.

Selección de la técnica de tratamiento de datos más adecuada (Fuente: http://1.bp.blogspot.com/-ME24ePzpzIM/UQLWTwurfXI/AAAAAAAAANw/W3EETIroA80/s1600/drop_shadows_background.png)
Selección de la técnica de tratamiento de datos más adecuada (Fuente: http://1.bp.blogspot.com/-ME24ePzpzIM/UQLWTwurfXI/AAAAAAAAANw/W3EETIroA80/s1600/drop_shadows_background.png)

Más que una chuleta, es un flujograma que terminará en el método que deberíamos utilizar para el objetivo que perisgamos. Como podéis ver, simplemente navegando por las preguntas que se van realizando a través del flujograma, puedo llegar yo a saber qué familia de tratamiento de datos es la más adecuada para los objetivos que persigo.

Como podéis comprobar, el punto de partida es tener una muestra de 50 instancias/observaciones. A partir de ahí, o bien debemos buscar más, o bien poder seguir navegando hasta encontrar el método más adecuado. ¿Qué buscamos?

  • ¿Predecir una cantidad numérica? Aquí los métodos de regresión serán tu solución.
  • ¿Predecir una categoría? Los clasificadores pueden servir para alcanzar estos objetivos.
  • ¿Agrupar mis instancias/observaciones por un comportamiento común? Las técnicas de clusterización me permiten a mí agrupar observaciones por patrones similares.
  • ¿Observando la estructura de mi conjunto de datos? Las técnicas de reducción de la dimensionalidad son las que me pueden servir para este objetivo.

En definitiva, ya podéis observar cómo la ayuda a la toma de decisiones estratégicas (el Business Intelligence tradicional), se ha visto enriquecido gracias a dos nuevas dimensiones: una tecnológica (el Big Data) y otra matemática/estadística. ¿A qué esperas para sacar valor del Business Analytics en tu organización?