Archivo de la etiqueta: predicción

Guía para comenzar con algoritmos de Machine Learning

El interés por el concepto de «machine learning» no para de crecer. Como siempre, una buena manera de saberlo, es utilizando herramientas de agregación de intereses como son Google Trends (las tendencias de búsquedas en Google) y Google N Gram Viewer (que indexa libros que tiene Google escaneados y sus términos  gramaticales). Las siguientes dos imágenes hablan por sí solas:

Búsqueda del término "machine learning" en Google (Fuente: Google Trends)
Búsqueda del término «machine learning» en Google (Fuente: Google Trends)
El término "machine learning" en libros en el último siglo (Fuente: Google N Gram Viewer)
El término «machine learning» en libros en el último siglo (Fuente: Google N Gram Viewer)

Sin embargo, no se trata de un término nuevo que hayamos introducido en esta era del Big Data. Lo que sí ha ocurrido es el «boom de los datos» (derivado de la digitalización de gran parte de las cosas que hacemos y nos rodean) y el abaratamiento de su almacenamiento  y procesamiento (básicamente, los ordenadores  y sus procesadores cuestan mucho menos que antes). Vamos, dos de los vectores que describen esta era que hemos bautizado como «Big Data».

Los algoritmos de machine learning están viviendo un renacimiento gracias a esta mayor disponibilidad de datos y cómputo. Estos dos elementos permiten que estos algoritmos aprendan conceptos por sí solos, sin tener que ser programados. Es decir, se trata de ese conjunto de reglas abstractas que por sí solas son construidas, lo que ha traído y permitido que se «autonconfiguren».

La utilidad que tienen estos algoritmos es bastante importante para las organizaciones, dado que son especialmente buenos para adelantarnos a lo que pueda ocurrir. Es decir, que son bastante buenos para predecir, que es como sabéis, una de las grandes «inquietudes» del momento. Se pueden utilizar estos algoritmos de ML para otras cuestiones, pero su interés máximo radica en la parte predictiva.

Este tipo de problemas, los podemos clasificar en dos grandes categorías:

  • Problemas de regresión: la variable que queremos predecir es numérica (las ventas de una empresa a partir de los precios a fijar)
  • Problemas de clasificación: cuando la variable a predecir es un conjunto de estados discretos o categóricos. Pueden ser:
    • Binaria: {Sí, No}, {Azul, Rojo}, {Fuga, No Fuga}, etc.
    • Múltiple: Comprará {Producto1, Producto2…}, etc.
    • Ordenada: Riesgo {Bajo, Medio, Alto}, ec.

Estas dos categorías nos permiten caracterizar el tipo de problema a afrontar. Y en cuanto a soluciones, los algoritmos de machine learning, se pueden agrupar en tres grupos:

  • Modelos lineales: trata de encontrar una línea que se «ajuste» bien a la nube de puntos que se disponen. Aquí destacan desde modelos muy conocidos y usados como la regresión lineal (también conocida como la regresión de mínimos cuadrados), la logística (adaptación de la lineal a problemas de clasificación -cuando son variables discretas o categóricas-). Estos dos modelos tienen tienen el problema del «overfit»: esto es, que se ajustan «demasiado» a los datos disponibles, con el riesgo que esto tiene para nuevos datos que pudieran llegar. Al ser modelos relativamente simples, no ofrecen resultados muy buenos para comportamientos más complicados.
  • Modelos de árbol: modelos precisos, estables y más sencillos de interpretar básicamente porque construyes unas reglas de decisión que se pueden representar como un árbol. A diferencia de los modelos lineales, pueden representar relaciones no lineales para resolver problemas. En estos modelos, destacan los árboles de decisión y los random forest (una media de árboles de decisión). Al ser más precisos y elaborados, obviamente ganamos en capacidad predictiva, pero perdemos en rendimiento. Nada es gratis.
  • Redes neuronales: las redes artificiales de neuronas tratan, en cierto modo, de replicar el comportamiento del cerebro, donde tenemos millones de neuronas que se interconectan en red para enviarse mensajes unas a otras. Esta réplica del funcionamiento del cerebro humano es uno de los «modelos de moda» por las habilidades cognitivas de razonamiento que adquieren. El reconocimiento de imágenes o vídeos, por ejemplo, es un mecanismo compleja que nada mejor que una red neuronal para hacer. El problema, como el cerebro humano, es que son/somos lentos de entrenar, y necesitan mucha capacidad de cómputo. Quizás sea de los modelos que más ha ganado con la «revolución de los datos»; tanto los datos como materia prima, como procesadores de entrenamiento, le vienen como anillo al dedo para las necesidades que tienen.

En el gran blog Dataconomy, han elaborado una chuleta que es realmente expresiva y sencilla para que podamos comenzar «desde cero» con algoritmos de machine learning. La tendremos bien a mano en nuestros Programas de Big Data en Deusto.

Guía para principiantes de algoritmos de Machine Learning (Fuente: dataconomy.com)
Guía para principiantes de algoritmos de Machine Learning (Fuente: dataconomy.com)

Cuándo y por qué puede fallar un modelo predictivo

Las pasadas elecciones americanas, han vuelto a poner encima de la mesa un debate que parece ya clásico: los (supuestos) fallos de las encuestas. El debate también salió con la infravaloración que se hizo a la victoria del Partido Popular el pasado 26-J, el «sorpasso» que las encuestas vaticinaron o en el Brexit.

Las encuestas, como modelos que son, son una aproximación a la realidad. Lo que suele fallar en esos modelos de aproximación no son tanto los métodos predictivos empleados, sino cómo se pondera la idea de la incertidumbre. Y es que estos ejercicios de adelantarnos a lo que puede ocurrir en un futuro (predecir), nunca borran ni eliminan la incertidumbre. El mundo es así, no es lineal.

Lo que ocurre es que nuestra mente no funciona bien bajo incertidumbre, por lo que la encanta utilizar las predicciones como una idea cerrada y segura. Así manejamos la información con más facilidad, reducimos nuestra fatiga cognitiva,  y podemos conversar sobre los temas con más facilidad con la gente.

Pero los modelos predictivos, como decía, no son tan sencillos. Ni los modelos estadísticos para tratar de hacer una previsión de los resultados electorales, ni los que tratan de predecir qué ocurrirá en la economía o con la meteorología. Siempre habrá incertidumbre.

Miremos el caso de las elecciones americanas para ilustrar la idea de cuándo y por qué puede fallar un modelo predictivo. Cuando hablamos del Teorema de Bayes, ya dijimos que predecir consta de tres partes constituyentes:

  1. Modelos
  2. Calidad de datos
  3. Juicio humano

Vayamos por partes. Los modelos. Ningún modelo es perfecto, el famoso aforismo de la estadística («All models are wrong«) de George Box que citó en este artículo de 1976. A sabiendas que la ciencia política llevada décadas estudiando el campo, que hay gente realmente buena detrás construyendo modelos predictivos (FiveThirtyEight, Predictwise, etc.), no tengo la sensación de que fuera un problema metodológico de captura de mecanismos -atributos, variables predictoras- de elección de presidente (comportamiento de los diferentes estados, variables económicas y sociales, momentum, ruido social, etc.).

No obstante, como señala este reportaje de New York Times, es posible y probable que los modelos no recogieran bien cómo Trump desplazó el debate a la derecha y ganó en zonas rurales el gran soporte urbano que tenía Clinton. Aquí juegan otros elementos (el mecanismo de asignación de electores), pero entiendo eso sí estaba recogido. Como veis, más incertidumbres que certezas. Pero esto es lo que tiene hacer modelos; a posteriori te das cuenta, pero a priori es difícil estimar las mejores variables a incorporar.

Modelo predictivo de fivethirtyeight.com
Modelo predictivo de fivethirtyeight.com

En segundo lugar, los datos en sí. De su calidad y su vital importancia, también hemos hablado mucho por aquí. Evidentemente, en un proceso electoral en el que cada vez los medios digitales tienen mayor protagonismo, es un candidato este eje a ser considerado. La falta de veracidad de las respuestas de las encuestas (no sea que alguien se entere que voy a votar a Trump, incluso un fallo de memoria, por las prisas con las que se suele responder), el sesgo de respuesta (te respondo a lo que tú me preguntas, no más), sesgos muestrales (¿cómo preguntar a todos a sabiendas de la ausencia de uso de medios digitales o telefónicos en muchos casos?, aquí es donde entraría el margen de error), etc. Es por todos estos problemas de los datos por los que cada vez hay más «cocina» o corrección de las respuestas por quién lo ha podido preguntar/hacer la encuesta. Por otro lado, no olvidemos la cada vez mayor importancia de las redes sociales, donde los efectos de red son difíciles de recoger todavía a nivel metodológico. Por todo esto, es probable que los datos que lleguen a los modelos, no sean los mejores en estos momentos. Y que haya mucho que mejorar aún en toda esta parte.

En tercer y último lugar, esta la interpretación de los resultados que ofrece un modelo. Es decir, el juicio humano. Como decíamos al comienzo, es difícil en ocasiones, en un modelo predictivo, explicar a la gente que todo lo que aquí se «modeliza» es una aproximación a una realidad mucho más complicada que lo que un modelo representa. Esa diferencia, ese gap, es lo que ponderamos con la incertidumbre. Como no sabemos lo que va a ocurrir con 100% de certeza, lo expresamos. Un intervalo de confianza del 95%, no garantiza, obviamente, nada. Este valor quiere decir que de cada 20 muestras sobre esa misma población (el electorado americano), 19 veces, el valor a predecir (el resultado electoral), estará contenido en el modelo. Solo se «fallará» (que tampoco es un término del todo correcto en este  contexto), en 1 de cada 20 ocasiones. ¿Puede ser este el caso de la victoria de Donald Trump o el resto de situaciones explicadas al comienzo? Es posible y probable.

Como ven, hacer un modelo predictivo no es un tarea sencilla. Por ello, es bueno manejar esta terminología básica de elementos críticos a considerar para saber muy bien lo que se está haciendo. En nuestros Programas de Big Data, por eso empezamos siempre hablando de modelado y calidad de datos, para luego empezar con la estadística y los modelos de aprendizaje supervisado y no supervisado (Machine Learning). No todo es software, claro.

Del «Big Data» al «Data Capital»: aprovechando el valor de los datos con un data lake

Hay dos grandes formas de entender esta era del Big Data: como una evolución del Business Intelligence -herramientas que extraen inteligencia de la información de una compañía y sobre ésta elaboran algunas predicciones-, o como una disrupción. La primera consideración, suele descartarla.

El Business Intelligence, se significó en una época en la que eran los datawarehouse la norma. Es decir, grandes almacenes de datos, estructurados, con una administración rígida. No solo ya desde la óptica del almacenamiento del dato es diferente su consideración, sino también desde la mirada de procesamiento de datos. El BI tenía un marcado carácter descriptivo. En esta nueva era del Big Data, creo que la predicción es la norma y lo que todo el mundo quiere hacer. Adelantarse al futuro, pero de una manera más informada y evidenciada. Es decir, asentándose en la mayor cantidad de información posible.

Y esto, claro, como hemos comentado muchas veces, es más posible que nunca antes en la historia, por la gran cantidad de datos existentes. Pero, son datos, que muchas veces, no podemos estructurar (la lógica seguida por los datawarehouse). Son datos, además, que muchas veces, no se pueden «juntar» con otros; es mejor mantenerlos por separado, y luego ya tratar de juntarlos en tiempo de procesamiento para la extracción de valor.

Fuente: http://2.bp.blogspot.com/-dfr85pnA6R0/VtRjMG1rrUI/AAAAAAAAAHA/xsv2qhPtLIo/s302/Francisco%2BJavier%2BCervigon%2BRuckauer.jpg
Fuente: http://2.bp.blogspot.com/-dfr85pnA6R0/VtRjMG1rrUI/AAAAAAAAAHA/xsv2qhPtLIo/s302/Francisco%2BJavier%2BCervigon%2BRuckauer.jpg

Esta lógica, va un paso más allá dentro del paradigma del Big Data. Supone considerar el dato como otro activo más. Es más, supone considerar el dato como el activo más crítico de la organización. Y así, disponer de un «data capital», como otro activo más de la organización, que permita ser luego capitalizado y activado para su puesta en valor en la organización. Es decir, el almacenamiento en bruto de datos, puede ser interesante, sin mayor orden, estructura ni criterio de clasificación.

El problema es que en este momento, la mayor parte de las empresas (tanto grandes, medianas como pequeñas), está aún en la fase inicial: recopilan la información y la almacenan. Pero todavía no saben muy bien qué se puede hacer con ella. Por ello mismo, ya hay algunos que empiezan a considerar que en este estadío, en el que todavía las organizaciones no saben muy bien qué hacer, pero sí que disponen de datos, es fundametal articular una estrategia de almacenamiento de datos con sentido.

Y aquí, emerge con fuerza el concepto de «data lake». Como se puede ver en la siguiente representación gráfica, se trata de un repositorio de datos estructurados y no estructurados, sin ningún preprocesamiento, guardando los datos en bruto, y sin esquema. A los que venimos originariamente de la administración de bases de datos y sus esquemas rígidos, un concepto, un paradigma, sustantivamente diferente. Al carecer de esquema, añadir nuevos datos, será relativamente fácil.

Fuente: Microsoft
Fuente: Microsoft

Se trata, en definitiva, de proveer a las empresas de un mecanismo de almacenamiento de datos sin mayor compromiso. Ya veremos en qué momento se nos ocurre qué hacer. El problema que veníamos arrastrando, es que los sistemas de esquemas de datos, en muchas ocasiones, condicionaban luego lo que poder hacer con los datos. Porque ya representaban «algo».

Con esta explicación, se puede entender por qué esta era del Big Data, es para mí un paso más allá del Business Intelligence. En la era del BI, todos los datos que recogíamos (estructurados y no estructurados), los ordenábamos y clasificábamos según el esquema. En un data lake, también recogemos todos los datos, pero no los alteramos, limpiamos o manipulamos. Su valor queda bruto, y ya veremos en su día qué hacer con ello.

Sin alterar la «materia prima» y dejarla en bruto, dejamos abierto el campo de explotación. Y estas opciones, tan prometedoras para muchas empresas, es lo que está haciendo que cada vez más empresas me pregunten por los data lakes. Es algo que para la capitalización del dato dentro de las organizaciones, se alinea muy bien. Ya veremos algún día qué preguntas hacerles a los datos. Todavía no lo sabemos, pero no nos importa. Sabemos que esos datos tendrán valor.

Por todo esto, ya hay muchos profesionales del Big Data que dicen de cambiar el paradigma ETL (Extract, Transform, Load, del que ya hablé aquí) por ELT (Extract, Load, Transform). Es decir, ya transformaremos después, no antes, lo que suele restringir mucha las opciones de lo que podremos hacer. Los data lakes, precisamente adoptan ese rol de almacén de datos «neutro», en el que no condicionamos luego lo que se podrá hacer. Y por eso, las herramientas ELT (que no son nuevas, por otro lado), también pudieran vivir un renacimiento.

Para cerrar, una imagen muy representativa de la idea trasladada hoy.

Data Lake vs Data Warehouse (Fuente: http://www.martinsights.com/wp-content/uploads/sites/8/2014/09/Data-lake-vs-Data-warehouse.jpg)
Data Lake vs Data Warehouse (Fuente: http://www.martinsights.com/wp-content/uploads/sites/8/2014/09/Data-lake-vs-Data-warehouse.jpg)

 

El uso del Machine Learning en las entidades financieras

(Artículo de nuestro profesor Pedro Gómez Tejerina)

Las entidades financieras han sido las pioneras tradicionalmente en utilizar el Data Mining y Machine Learning (ML). Y lo han aplicado principalmente en el núcleo de su negocio, la financiación. Cuando un cliente quiere solicitar un préstamo, el banco le solicita una determinada información (edad, estado civil, nivel de ingresos, domicilio, etc). En realidad el banco lo que ha hecho internamente ha sido analizar los datos históricos de los préstamos que tiene concedidos e intentar determinar la probabidad de que un cliente con determinadas características pueda impagar ese préstamo (a través de modelos de Machine Learning). Es lo que se denomina un scoring, y es el primer requisito que requiere una entidad financiera para conceder un préstamo a un cliente, que pase ese modelo de scoring (es decir, que no tenga una gran probabilidad de impago según ese modelo estimado).

Pero hay otras muchas otras áreas dentro de un banco donde se utiliza el ML. Ya comentamos en otro artículo cómo los departamentos de Marketing hacen un proceso similar para intentar predecir qué clientes podrían contratar en un futuro cercano un nuevo producto. Son los denominados modelos de propensión y la lógica es parecida al caso anterior. Analizar los datos históricos de contrataciones de productos para buscar clientes “similares” a los que anteriormente ya contrataron esos productos. Los clientes más parecidos a los que en el pasado contrataron un producto son a priori los que más probabilidad tienen de contratarlos en el futuro. A esos serán a los siguientes a los que les ofrecerán las ofertas comerciales.

Pero esto del ML tiene muchas más aplicaciones en una entidad financiera. Por ejemplo intentar detectar automáticamente operaciones (bien sean de tarjetas de crédito o transferencias) fraudulentas para evitar disgustos a sus clientes. O intentar predecir el uso en fin de semana de los cajeros automáticos de las oficinas para asegurarse de que no se quedan sin efectivo cuando los clientes vayan a retirarlo. O incluso a nivel organizativo re-estructurar la localización de sus oficinas físicas para atender mejor a sus clientes a través del análisis de los datos de las visitas de los mismos a las oficinas. Y todo esto por no hablar de los motores de recomendación de inversión, que analizan rentabilidades históricas de los activos financieros para ofrecer recomendaciones de inversión personalizadas a los clientes según el apetito de riesgo que estos tengan.

Todos estos ejemplos son tan sólo una muestra de las aplicaciones que el mundo del Data Mining y Machine Learning tienen en una entidad financiera, pero como os podéis imaginar, hay muchos más. La tendencia actual es enriquecer estos modelos con otro tipo de datos (redes sociales, Open Data, datos no estructurados…) para mejorar su capacidad predictiva. Aquí es donde entra en juego el Big Data.

Fuente: https://www.coursera.org/course/compfinance
Fuente: https://www.coursera.org/course/compfinance

La analítica avanzada en tiendas, vacas y ascensores: la predicción al servicio de la productividad

Leyendo tres noticias de sectores diferentes (lineal de productos, rendimiento de las vacas y seguridad en ascensores), uno puede darse cuenta de la capacidad que tienen las tecnologías habilitantes Big Data e Internet of Things para aumentar los resultados y las posibilidades de un negocio dado.

Fuente: http://cincodias.com/cincodias/2016/01/07/pyme/1452160715_268138.html
Fuente: http://cincodias.com/cincodias/2016/01/07/pyme/1452160715_268138.html
Fuente: http://www.elconfidencial.com/tecnologia/2015-06-05/microsoft-inteligencia-artificial-big-data-vacas_869589/
Fuente: http://www.elconfidencial.com/tecnologia/2015-06-05/microsoft-inteligencia-artificial-big-data-vacas_869589/
Fuente: http://economia.elpais.com/economia/2015/10/27/actualidad/1445970291_443260.html
Fuente: http://economia.elpais.com/economia/2015/10/27/actualidad/1445970291_443260.html

Hace ya 10 años, fabricantes de electrodomésticos nos hablaban sobre la posibilidad de hacer pedidos con carácter predictivo sobre la base de tu consumo. Pensábamos en ello como algo irreal. A mí me cogió esa época como estudiante de Ingeniería en Informática. ¿Meter Internet en objetos físicos? Nos parecía algo irreal.

Pero hoy, estos objetos conectados e inteligentes, son toda una realidad. Para que un objeto sea inteligente, debe ser capaz de monitorizar. Es decir, sensores y datos externos entiendan el entorno y sean capaces de informar de los cambios. Y lo que ha ocurrido en estos últimos años son dos cosas: Por un lado que las tecnologías han ido madurando, hasta los sistemas de análisis de datos, motores de reglas para generar automatizaciones y toma de decisiones actuales (popular y ambiguamente denominados «Big Data«). Y, en segundo lugar, la generalización de las interfaces o API que han permitido la definición de estándares y los «things» u objetos, ahora se interconectan, hablan y trabajan solidaria y colegidamente.

Esta nueva revolución industrial, según General Electric, será capaz de producir un incremento del 1% en la eficiencia de las empresas. Y eso, aún hoy en día, en el que el 99% de los objetos del mundo, no están todavía conectados a Internet, por lo que no pueden beneficiarse de todas estas eventuales mejoras. Por ello, CISCO, en su informe «Internet de las cosas y la evolución de Internet«, alerta que en 2020 habrá más de 36.000 millones de dispositivos inteligentes conectados en lo que se ha venido a denominar Internet of Everything.

Todo esto, para el «mundo Big Data» es una oportunidad muy importante. Se estima que menos del 1% de la información derivada de la conectividad de los objetios se emplea. Existe, así, mucho potencial para la optimización, modelos preventivos y predictivos, y en definitiva, para la monetización. Las tres noticias antes mostradas, son prueba de lo que intentamos exponer en este artículo.

Por un lado, MobileXperience, que ofrece más productividad a las empresas y adelantarse a demandas de producto y satisfacer mejor la experiencia de cliente. Es decir, «adelantarse» a las compras de los clientes, lo que puede traer, no solo mejor rendimiento de la ubicación de los productos en el lineal (más ventas), sino también menos costes logísticos y de almacén (menos coste). Es decir, dos de las principales ventajas de lo que el Big Data aporta a las empresas.

El segundo lugar, el «Internet de las vacas«. Como se puede leer aquí, si se colocan sensores en las patas de las vacas con objeto de monitorizar sus pasos, a través de los patrones que se obtengan, se puede determinar el momento óptimo para inseminarla y predecir así el sexo del ternero. Los resultados son que en las granjas que han probado este sistema, se ha logrado un 50% más de terneros, con los consiguientes beneficios.

Por último, ThyseenKrupp Elevadores, que quería obtener una ventaja competitiva a través de lo que más importa a sus clientes: fiabilidad (pensad en vosotros mismos al montar a un ascensor). Por lo tanto, a menos averías, más fiabilidad, y más ventajas competitiva. Para ello, resulta fundamental adelantarse a situaciones en las que el ascensor suele averiarse. Por ello, se desarrolló una solución para detectar problemas en ascensores ante las primeras señales de alerta, y así hacer un mantenimiento preventivo en lugar de correctivo (lo cual trae importantes ahorros a las empresas). Más allá de aspectos mecánicos y de diseño, los sensores y los datos que generan importantes oportunidades de mejora en los procesos de la organización.

ThyseenKrupp calcula que la suma de las esperas de los 1.000 millones de personas que anualmente emplean alguno de los 12 millones de ascensores que funcionan en el mundo, produce pérdidas de 190 millones de horas (traduzcan esto a euros en su emprsa…). Una cifra que podría reducirse a la mitad si todos los aparatos llevaran el nuevo sistema. Por lo tanto, más productividad para las empresas.

En un país como España, quinto país con más ascensores del mundo (880.000 unidades), puede tener un impacto importante. Y ahora piensen en la proyección de urbanización en el mundo,  y la necesidad de ascensores que habrá (según proyecciones demográficas de Naciones Unidas, en 2050 vivirán cerca de 9.100 millones de personas en ciudades, un 70% de la población global). De nuevo, el Big Data, como promesa de gran impacto social, económico y productivo.

Según Accenture, en un informe elaborado con stakeholders de la industria, esta tendencia de convergencia entre Big Data e Internet of Things, se puede resumir en torno a cinco actividades de negocio:

  • Transporte conectado: mejora de la experiencia en medios de transporte.
  • Espacios conectados: mejora del uso de espacios físicos donde trabajamos y vivimos, incluyendo edificios inteligentes, hogares inteligentes u otros lugares donde se puede reducir el consumo energético.
  • Operaciones conectadas: enriquecimiento de los procesos de trabajo y de los activos para aumentar la productividad.
  • Sanidad conectada: mejora de la calidad de los servicios sanitarios, experiencia de los pacientes -lo más importante, claro-, y los procesos operativos y de uso de equipos médicos.
  • Comercio conectado: nuevos procesos conectados: sistemas de pago, logística, ofertas personalizadas, canales de distribución, etc.

Como pueden ver, la predicción y el mantenimiento preventivo puede traer tanto ahorros como ingresos. En algún sitio de la cadena de valor de una empresa hay una oportunidad de mejora. Noticias que abren la vía a la reflexión sobre cómo un negocio, pudiera explotar sus datos, y «adelantarse» a hechos. Todo ello, de la mano del Internet de las cosas y del paradigma de la analítica avanzada. Uno de los aspectos clave del Big Data y Business Intelligence.

Por qué hablamos del Business Analytics y no solo de Business Intelligence

El Business Intelligence (Inteligencia de Negocios) es un conjunto de métodos y técnicas que han venido empleándose desde hace años en diferentes sectores para ayudar en la toma de decisiones. Básicamente consiste en el procesamiento de datos para obtener información resumida y sintetizada de todos ellos.

Lo que ha ocurrido es que en los últimos años ha aparecido un nuevo paradigma, que hemos venido a denominar Big Data. Un paradigma que se puede describir por sus cinco elementos que lo caracterizan: Volumen (gran cantidad de datos), Variedad (diferentes formatos, estructuras, etc. de datos), Velocidad (gran velocidad a la que los generemos), Variabilidad (datos no muy estáticos, sino que cambian con cierta frecuencia) y Valor (el gran potencial de generación de valor que tienen para las organizaciones).

Las cinco V del Big Data (Fuente: http://boursinos.gr/wp-content/uploads/sites/8/2014/02/bigdata-v5-lens.jpg)
Las cinco V del Big Data (Fuente: http://boursinos.gr/wp-content/uploads/sites/8/2014/02/bigdata-v5-lens.jpg)

Este nuevo paradigma, junto con los métodos avanzados de procesamiento estadístico y matemático (incertidumbre y exactitud) de datos, enriquecen y permiten una toma de decisiones aún más estratégica e informada. Ahora, una empresa no solo puede resumir el pasado (enfoque Business Intelligence), sino que también puede establecer relaciones y comparaciones entre variables para tratar de adelantarse al futuro (Business Analytics).

Business Analytics vs. Business Intelligence (Fuente: https://wiki.smu.edu.sg/is101_2012/img_auth.php/e/ec/Business_Analytics.jpg)
Business Analytics vs. Business Intelligence (Fuente: https://wiki.smu.edu.sg/is101_2012/img_auth.php/e/ec/Business_Analytics.jpg)

Es decir, que evolucionamos del Business Intelligence tradicional al Business Analytics gracias al nuevo paradigma que trae el Big Data y los métodos de procesamiento de datos más avanzados. Con estos servicios de Business Analytics, básicamente, a una compañía, lo que podemos ofrecerle son dos tipos de explotaciones de datos:

  • Informar: ver lo que ha ocurrido en el pasado, y tomar decisiones reactivas (Business Intelligence).
  • Predecir: inferir lo que puede ocurrir en el pasado, y tomar decisiones proactivas (Business Analytics)

A partir de estos principios básicos de lo que el Business Analytics es, ya pueden ustedes imaginarse el gran potencial que tiene. Como decía al comienzo, el Business Analytics trae una inteligencia a los negocios enriquecido a través de modelos estadísticos que permiten descubrir nuevas estructuras, patrones, relaciones entre variables, etc. Esto, sumado a la era de la ingente cantidad de datos, hace que las compañías se puedan beneficiar de todo ello en muchas áreas: sanidad, educación, marketing, producción, logística, etc.

Para que se hagan ustedes a la idea, y puedan llevarlo a un plano práctico de su día a día, puede responder a preguntas como:

  • ¿Cómo puedo descubrir más información relevante sobre mis clientes? Datos como los drivers que le llevan realmente a comprar, cómo se relacionan mis clientes entre ellos, qué opiniones son las que han sido clave para la toma de decisión de compra, etc.
  • ¿Qué pasaría si cambio el precio de mis productos/servicios? Es decir, disponer de un análisis de sensibilidad de una variable (precio) respecto a su impacto en otra (ventas totales de ese producto o sobre otros), de manera que puedo ver la relación entre las mismas.
  • ¿Cómo puedo reducir la tasa de abandonos de mis clientes? Es decir, construir un modelo de propensión a la fuga, para saber qué puntos o acciones son las que pueden llevar a un cliente a abandonarme. De esta manera, a futuro, tendría más probabilidad de encontrar clientes que pudieran marcharse de la compañía.
  • ¿Cómo puedo identificar a los clientes más rentables? No desde el punto de vista de las ventas totales, sino del valor que extraigo de cada uno de ellos (entendiendo valor como margen de beneficio)
  • ¿Cómo puedo detectar fraude? Analizando el histórico de valores que van tomando las variables para los casos de éxito (no hay fraude, se paga a tiempo, no hay insolvencias, etc.) y los de fracaso (fraudes, impagos, etc.), se pueden construir modelos que relacionen las variables que frecuentemente están asociados a los casos de fracaso, y así poder anticiparse a futuro.
  • etc.

Para poder hacer esto, como pueden imaginarse, los métodos de descubrimiento de información resultan fundamentales. Bueno, partiendo de la base que lo más importante es que tengamos bien preprocesada nuestra información, porque sin eso, cualquier algoritmo fallará. Esto es precisamente lo que hablamos al introducir los ETL y la importancia de la calidad de datos y su preprocesado.

Los métodos a utilizar son variados y a veces uno no sabe cuál de ellos va a dar mejores resultados o cuál de ellos se adecúa a lo que yo realmente estoy buscando. En el blog Peekaboo publicaron un cheat sheet (una «chuleta» de toda la vida) que utilizo siempre en los cursos introductorios a Business Analytics, dado que es bastante expreisva.

Selección de la técnica de tratamiento de datos más adecuada (Fuente: http://1.bp.blogspot.com/-ME24ePzpzIM/UQLWTwurfXI/AAAAAAAAANw/W3EETIroA80/s1600/drop_shadows_background.png)
Selección de la técnica de tratamiento de datos más adecuada (Fuente: http://1.bp.blogspot.com/-ME24ePzpzIM/UQLWTwurfXI/AAAAAAAAANw/W3EETIroA80/s1600/drop_shadows_background.png)

Más que una chuleta, es un flujograma que terminará en el método que deberíamos utilizar para el objetivo que perisgamos. Como podéis ver, simplemente navegando por las preguntas que se van realizando a través del flujograma, puedo llegar yo a saber qué familia de tratamiento de datos es la más adecuada para los objetivos que persigo.

Como podéis comprobar, el punto de partida es tener una muestra de 50 instancias/observaciones. A partir de ahí, o bien debemos buscar más, o bien poder seguir navegando hasta encontrar el método más adecuado. ¿Qué buscamos?

  • ¿Predecir una cantidad numérica? Aquí los métodos de regresión serán tu solución.
  • ¿Predecir una categoría? Los clasificadores pueden servir para alcanzar estos objetivos.
  • ¿Agrupar mis instancias/observaciones por un comportamiento común? Las técnicas de clusterización me permiten a mí agrupar observaciones por patrones similares.
  • ¿Observando la estructura de mi conjunto de datos? Las técnicas de reducción de la dimensionalidad son las que me pueden servir para este objetivo.

En definitiva, ya podéis observar cómo la ayuda a la toma de decisiones estratégicas (el Business Intelligence tradicional), se ha visto enriquecido gracias a dos nuevas dimensiones: una tecnológica (el Big Data) y otra matemática/estadística. ¿A qué esperas para sacar valor del Business Analytics en tu organización?