Archivo de la etiqueta: analítica avanzada

El “mercado de Hadoop” y MapR: el valor de las tecnologías Big Data

En un artículo anterior, hablábamos del nacimiento de esta era del Big Data. Y comentábamos, que el framework Hadoop había jugado en ello un papel fundamental. Desde entonces, su uso no ha dejado de crecer en el mundo empresarial.

El “mercado de Hadoop” está en pleno crecimiento. Hablamos de un mercado en el que las empresas, cogen el framework open source del que hablábamos, y desarrollan sus propias soluciones. Es una carrera entre tres principales “players”:

Con estas cifras, además de entender el dinamismo del sector ahora mismo, se deja entrever que las valoraciones de las que estamos hablando de tecnologías Big Data, no son nada pequeños. Y si utilizamos estas cifras para aproximarnos a su verdadero valor, creo que podemos pensar que valor, existe.

Vamos a hablar de MapR, solo por la reciente noticia del aumento de su capital nuevamente. Y lo haremos como excusa para entender qué empresas están detrás de todo ello, y cuál es su base de clientes. Una tecnología de procesamiento de datos masivos que se asienta sobre el paradigma MapReduce, y que ofrece a las empresas la posibilidad de procesamiento Batch y Tiempo real (ya hablaremos de ello).

Tecnologías MapR (Fuente: http://www.storagenewsletter.com/wp-content/uploads/old/0icono13/mapr_der_540_01.jpg.pagespeed.ce.PJ1TlwAsX7.jpg)
Tecnologías MapR (Fuente: http://www.storagenewsletter.com/wp-content/uploads/old/0icono13/mapr_der_540_01.jpg.pagespeed.ce.PJ1TlwAsX7.jpg)

Ellos se autodefinen como plataforma de datos de convergencia, en el sentido que te permite hacer “de todo” con los datos con un mismo paquete de módulos tecnológicos. Una empresa que ha duplicado en el último trimestre su cartera de clientes, que ya incluyen a empresas del tamaño de American Express, Audi, Ericsson, NTT, Philips o el banco Mizuho. Su modelo de negocio se asienta sobre las licencias y los servicios de soporte. Representan un 90% de sus ingresos totales. Y esto es lo que exponen en su propia web:

MapR proporciona, en el marco del universo Hadoop, una plataforma unificada que dispone de funcionalidades de misión crítica, que permite realizar desarrollos de producción en tiempo real. MapR cuenta con cerca de 700 clientes de los sectores de finanzas, gobierno, salud, Internet, industria, medios, retail y telecomunicaciones. Amazon, Cisco, Google, Teradata y HP también forman parte del ecosistema de partners de MapR.

¿Y cuál es su propuesta de valor? Básicamente, sobreponerse a las restricciones que tiene la distribución estándar de Hadoop, pero bajo una licencia que sigue siendo Apache. En lugar del HDFS del que hablábamos, ofrece MapRFS para una gestión de datos más eficiente, confiable y fácil de usar. Por ello, suelen decir que está más orientada a la “producción empresarial” que las dos anteriores.

Además, su módulo de integración de datos es realmente eficiente, permitiendo a las organizaciones integrar y procesar datos “legacy” así como nuevos, procedentes de diferentes plataformas. Una vez hecho esto, igualmente proveen soluciones de analítica avanzada.

El procesamiento de datos en el mundo de las empresas está en tanta transformación, que todas estas empresas proveedoras de soluciones de procesamiento de grandes volúmenes de datos, seguirán registrando cifras récord. La tendencia así parece demostrarlo. Aquellas que más están cambiando (aquellas que más competitividad están consiguiendo), son clientes de MapR, Hortonworks o Cloudera. Por ello, nada hace pensar que esta tendencia va a cambiar.

La analítica avanzada en tiendas, vacas y ascensores: la predicción al servicio de la productividad

Leyendo tres noticias de sectores diferentes (lineal de productos, rendimiento de las vacas y seguridad en ascensores), uno puede darse cuenta de la capacidad que tienen las tecnologías habilitantes Big Data e Internet of Things para aumentar los resultados y las posibilidades de un negocio dado.

Fuente: http://cincodias.com/cincodias/2016/01/07/pyme/1452160715_268138.html
Fuente: http://cincodias.com/cincodias/2016/01/07/pyme/1452160715_268138.html
Fuente: http://www.elconfidencial.com/tecnologia/2015-06-05/microsoft-inteligencia-artificial-big-data-vacas_869589/
Fuente: http://www.elconfidencial.com/tecnologia/2015-06-05/microsoft-inteligencia-artificial-big-data-vacas_869589/
Fuente: http://economia.elpais.com/economia/2015/10/27/actualidad/1445970291_443260.html
Fuente: http://economia.elpais.com/economia/2015/10/27/actualidad/1445970291_443260.html

Hace ya 10 años, fabricantes de electrodomésticos nos hablaban sobre la posibilidad de hacer pedidos con carácter predictivo sobre la base de tu consumo. Pensábamos en ello como algo irreal. A mí me cogió esa época como estudiante de Ingeniería en Informática. ¿Meter Internet en objetos físicos? Nos parecía algo irreal.

Pero hoy, estos objetos conectados e inteligentes, son toda una realidad. Para que un objeto sea inteligente, debe ser capaz de monitorizar. Es decir, sensores y datos externos entiendan el entorno y sean capaces de informar de los cambios. Y lo que ha ocurrido en estos últimos años son dos cosas: Por un lado que las tecnologías han ido madurando, hasta los sistemas de análisis de datos, motores de reglas para generar automatizaciones y toma de decisiones actuales (popular y ambiguamente denominados “Big Data“). Y, en segundo lugar, la generalización de las interfaces o API que han permitido la definición de estándares y los “things” u objetos, ahora se interconectan, hablan y trabajan solidaria y colegidamente.

Esta nueva revolución industrial, según General Electric, será capaz de producir un incremento del 1% en la eficiencia de las empresas. Y eso, aún hoy en día, en el que el 99% de los objetos del mundo, no están todavía conectados a Internet, por lo que no pueden beneficiarse de todas estas eventuales mejoras. Por ello, CISCO, en su informe “Internet de las cosas y la evolución de Internet“, alerta que en 2020 habrá más de 36.000 millones de dispositivos inteligentes conectados en lo que se ha venido a denominar Internet of Everything.

Todo esto, para el “mundo Big Data” es una oportunidad muy importante. Se estima que menos del 1% de la información derivada de la conectividad de los objetios se emplea. Existe, así, mucho potencial para la optimización, modelos preventivos y predictivos, y en definitiva, para la monetización. Las tres noticias antes mostradas, son prueba de lo que intentamos exponer en este artículo.

Por un lado, MobileXperience, que ofrece más productividad a las empresas y adelantarse a demandas de producto y satisfacer mejor la experiencia de cliente. Es decir, “adelantarse” a las compras de los clientes, lo que puede traer, no solo mejor rendimiento de la ubicación de los productos en el lineal (más ventas), sino también menos costes logísticos y de almacén (menos coste). Es decir, dos de las principales ventajas de lo que el Big Data aporta a las empresas.

El segundo lugar, el “Internet de las vacas“. Como se puede leer aquí, si se colocan sensores en las patas de las vacas con objeto de monitorizar sus pasos, a través de los patrones que se obtengan, se puede determinar el momento óptimo para inseminarla y predecir así el sexo del ternero. Los resultados son que en las granjas que han probado este sistema, se ha logrado un 50% más de terneros, con los consiguientes beneficios.

Por último, ThyseenKrupp Elevadores, que quería obtener una ventaja competitiva a través de lo que más importa a sus clientes: fiabilidad (pensad en vosotros mismos al montar a un ascensor). Por lo tanto, a menos averías, más fiabilidad, y más ventajas competitiva. Para ello, resulta fundamental adelantarse a situaciones en las que el ascensor suele averiarse. Por ello, se desarrolló una solución para detectar problemas en ascensores ante las primeras señales de alerta, y así hacer un mantenimiento preventivo en lugar de correctivo (lo cual trae importantes ahorros a las empresas). Más allá de aspectos mecánicos y de diseño, los sensores y los datos que generan importantes oportunidades de mejora en los procesos de la organización.

ThyseenKrupp calcula que la suma de las esperas de los 1.000 millones de personas que anualmente emplean alguno de los 12 millones de ascensores que funcionan en el mundo, produce pérdidas de 190 millones de horas (traduzcan esto a euros en su emprsa…). Una cifra que podría reducirse a la mitad si todos los aparatos llevaran el nuevo sistema. Por lo tanto, más productividad para las empresas.

En un país como España, quinto país con más ascensores del mundo (880.000 unidades), puede tener un impacto importante. Y ahora piensen en la proyección de urbanización en el mundo,  y la necesidad de ascensores que habrá (según proyecciones demográficas de Naciones Unidas, en 2050 vivirán cerca de 9.100 millones de personas en ciudades, un 70% de la población global). De nuevo, el Big Data, como promesa de gran impacto social, económico y productivo.

Según Accenture, en un informe elaborado con stakeholders de la industria, esta tendencia de convergencia entre Big Data e Internet of Things, se puede resumir en torno a cinco actividades de negocio:

  • Transporte conectado: mejora de la experiencia en medios de transporte.
  • Espacios conectados: mejora del uso de espacios físicos donde trabajamos y vivimos, incluyendo edificios inteligentes, hogares inteligentes u otros lugares donde se puede reducir el consumo energético.
  • Operaciones conectadas: enriquecimiento de los procesos de trabajo y de los activos para aumentar la productividad.
  • Sanidad conectada: mejora de la calidad de los servicios sanitarios, experiencia de los pacientes -lo más importante, claro-, y los procesos operativos y de uso de equipos médicos.
  • Comercio conectado: nuevos procesos conectados: sistemas de pago, logística, ofertas personalizadas, canales de distribución, etc.

Como pueden ver, la predicción y el mantenimiento preventivo puede traer tanto ahorros como ingresos. En algún sitio de la cadena de valor de una empresa hay una oportunidad de mejora. Noticias que abren la vía a la reflexión sobre cómo un negocio, pudiera explotar sus datos, y “adelantarse” a hechos. Todo ello, de la mano del Internet de las cosas y del paradigma de la analítica avanzada. Uno de los aspectos clave del Big Data y Business Intelligence.