Archivo de la etiqueta: R

Big Data: la posición más difícil de cubrir en España

El pasado 7 de marzo, Cinco Días, publicaba esta noticia: “Big data, el perfil más difícil de cubrir en España“. Según el artículo y sus fuentes, las profesiones asociadas con las tecnologías de Big Data son las más difíciles de cubrir. Su fuente principal es el informe EPYCE 2017: Posiciones y Competencias más demandadas, elaborado por EAE Business School junto con la Asociación Española de Directores de Recursos Humanos (AEDRH), la CEOE, el Foro Inserta de la Fundación Once y Human Age Institute.

Posiciones más difíciles de cubrir en España (Fuente: Cinco Días)
Posiciones más difíciles de cubrir en España (Fuente: Cinco Días)

En un blog como éste, donde hablamos tanto del paradigma del Big Data y sus múltiples implicaciones en nuestras sociedades, naturalmente, no podíamos dejar sin sacar esta noticia. Llevamos años ya formando perfiles de Big Data en nuestros Programas de Big Data en Bilbao, Donostia y Madrid.

El informe original contiene aún más información. Aspecto que recomiendo revisar, para que se entienda bien no solo la metodología, sino los contenidos (datos) analizados. Miren por ejemplo esta gráfico que adjunto:

bigdatadeusto

Con un nivel de detalle mayor, lo que vemos es que no solo la parte tecnológica (que siempre está en el top de los ranking de bajo desempleo), sino también la ciencia de datos (que son nuestras dos patas fundamentales en nuestros programas), son las más demandadas. En general, hay numerosas profesiones técnicas demandadas en todo el ranking y el informe. Lo cual nos viene a confirmar que efectivamente estamos viviendo una transformación tecnológica y digital en múltiples planos.

Lo que parece que viene a confirmar este informe es que estamos viviendo cierta brecha entre los perfiles que demandan las empresas y lo que realmente se dispone luego en el mercado de trabajo. Parece real esa velocidad a la que se está efectuando esta transformación digital de la sociedad, que está provocando que muchos perfiles no puedan seguirla, y no les dé tiempo a actualizar sus competencias y habilidades. El Big Data, la revolución de los datos, parece que ha venido para quedarse.

No obstante, en relación a todo esto, creo que cabría introducir tres elementos de reflexión. A buen seguro, a cualquier lector o lectora de estas estadísticas, le interesará conocer qué hay más allá de estas gráficas. Básicamente, porque la gestión de expectativas laborales en los programas formativos, creo que debe caracterizarse por la honestidad, para que luego no produzca frustraciones. Estos tres puntos son: (1) Descripción de “supermanes” y “superwomanes” en los puestos de trabajo de las empresas; (2) el concepto “experiencia” en las organizaciones; (3) el talento cuesta dinero.

En relación al (1), darse una vuelta por Linkedin suele ser muy ilustrativo a estos efectos. Las empresas, cuando buscan perfiles “de Big Data” (así en genérico y abstracto), suelen hacerlo solicitando muchas habilidades y competencias que me parece difícil que lo cubra una misma persona: conocimientos de programación (R, Python, Java, etc.), conocimiento de los frameworks de procesamiento de grandes volúmenes de datos y sus componentes (Spark y Hadoop, y ya de paso Storm, Hive, Sqoop, etc.), que sepa administrar un clúster Hadoop, que sepa cómo diseñar una arquitectura de Big Data eficiente y óptima, etc. Una persona que en definitiva, dé soporte a todo el proceso de un proyecto de Big Data, desde el inicio hasta el final. Este enfoque es bastante complicado de cubrir: para una persona manejar todo eso es realmente complicado, dado que no solo los códigos de pensamiento, sino también las habilidades, no suelen estar relacionadas.

En cuanto al (2), que se pida para estos puestos experiencia, me parece un poco temeroso. Estamos hablando de un paradigma que irrumpe con fuerza en 2013. Por lo que estar pidiendo experiencias de más de 2-3-4 años, es literalmente imposible de cubrir. Y menos en España donde todavía no hay tantas realidades en proyectos de Big Data como se cree. ¿Quizás la falta de cobertura de vacantes tenga que ver precisamente con esta situación? Por ello sería bueno saber realmente qué es lo que no están encontrando: ¿el puesto necesario? ¿el puesto definido por las empresas? ¿las expectativas mal gestionadas? Quizás sería bueno, y los empleadores bien saben que siempre les digo, que la formación es un buen mecanismo para poder prescindir de este factor de experiencia. Ahora mismo estamos colaborando con importantes empresas y organizaciones que están formando a varios perfiles a la vez porque son conocedores del límite de la experiencia del que hablamos.

Por último, en cuanto al (3). Hay una expresión inglesa que me gusta rescatar cuando hablo de esto: “You get what you pay“. Una expresión muy común también últimamente en el sector tecnológico. No podemos pretender pagar salarios bajos y que luego tengamos esos supermanes y superwomanes que decía anteriormente. Tenemos que ser coherente con ello. Nuestro conocimiento tecnológico, el talento técnico que formamos en España, está muy bien valorado en muchos lugares de Europa (Dublin, Londres, Berlín, etc.) y el mundo (San Francisco, New York, Boston, etc.). Es normal que en muchas ocasiones este talento se quiera ir al extranjero. ¿Pudiera estar aquí también parte de la explicación de la dificultad para cubrir puestos?

 

Lenguaje R: herramienta potente y gratuita para la inteligencia de negocio – Ejemplo de análisis de texto

(Artículo escrito por nuestra alumna Olatz Arrieta, de la 3ª promoción del Programa de Big Data y Business Intelligence en Bilbao)

Después de un año de duro trabajo, termino el Programa de Big Data y Business Intelligence impartido por la facultad de ingeniería de la Universidad de Deusto. A lo largo de este tiempo, hemos aprendido muchísimo de las múltiples facetas de este concepto tan amplio que es el “Big Data”, pero, sin duda, uno de los mejores y más prácticos decubrimientos ha sido el entornolenguaje “R”.

R es un lenguaje superversatil, gratuito y con un soporte “open” impresionante en internet (por supuesto en inglés), que te permite encontrar siempre solución, una paquete desarrollado y scripts de ejemplo, para cualquier necesidad que te encuentres en un proyecto. Yo, en este tiempo en el que me he podido empezar a asomar a este universo de posibilidades, lo he utilizado en prácticas de casos reales para distintos usos:

  • Hacer calidad y manipulación de datos, eliminando las limitaciones de volumen que tenemos con herramientas habituales como Excel, y utilizando funciones que, en un solo paso, realizan operaciones que de otra manera supondrían numerosas pasos y tablas intermedias.
  • Aplicar modelos de predicción (regresión, clasificación) y descripción (clustering, asociación, correlación,..) a importantes volúmenes de datos para extraer conclusiones relevantes y no inmediatas.
  • Pasar información de un soporte-formato a otro de manera sencilla para poder importar o exportar desde o hacia distintas fuentes.
  • Hacer tratamientos de texto: palabras key, nubes de palabras o análisis de sentimiento de cualquier texto, incluso de páginas web o RRSS (facebook, twitter,..)

Esta última aplicación de análisis de texto,  ha sido el objeto de mi último proyecto de trabajo en el máster, cuyo objetivo era practicar con algunas de las herramientas que R tiene para estos cometidos.

Decidí analizar los textos de los discursos de navidad del Lehendakari y del Rey de España en diciembre 2007 y diciembre 2017. Quéría observar qué diferencias y evolución ha habido entre los dos perfiles en estos 10 años. Tras la correspondiente limpieza y adecuación de los textos, por ejemplo sustituyendo ñ por gn, eliminando tildes, poniendo en minúsculas todo, igualando conceptos similares como democracia – democrático/a para poder observar mejor su peso, etc. muestro un ejemplo de algunos de los resultados obtenidos

Las palabras que no faltan en ninguno de los discursos, estando presentes en todos, más de 2 veces, son las siguientes:

Palabras discurso lehendakari y rey (Fuente: elaboración propia)
Palabras discurso lehendakari y rey (Fuente: elaboración propia)

Las 20 palabras más repetidas en cada discurso, y su frecuencia de aparición a lo largo del mismo, son las siguientes:

Las palabras más repetidas en cada discurso (Fuente: elaboración propia)
Las palabras más repetidas en cada discurso (Fuente: elaboración propia)
Las palabras más repetidas II (Fuente: elaboración propia)
Las palabras más repetidas II (Fuente: elaboración propia)

Sin ánimo de ser exhaustiva ni realizar valoraciones, destaco algunas observaciones sencillas que se pueden extraer como ejemplo:

  • El Lehendakari Ibarretxe en 2007 ha sido sin duda el más reiterativo en los conceptos clave de su discurso ya que presenta claramente una frecuencia más alta en mayor número de palabras que los demás.
  • En 2007 el Lehendakari repetía la palabra ETA mientras que el Rey usaba “terrorismo” y la temática “terrorismo” ha perdido peso en 2017
  • En 2017 ambos dirigentes presentan en sus primeros puestos de reiteración, sus ámbitos territoriales (Euskadi, España) y aspectos ligados a la convivencia, sociedad o personas.
  • En 2017 “Cataluña” no es mencionada de manera relevante por el Lehendakari y sí por el Rey que destaca también otras palabras ligadas a este asunto.
  • La palabra “constitución”, principal argumento del discurso del Rey en 2007, desaparece de los discursos en 2017, siendo sustituida por conceptos más “soft”como democracia, derecho, principios,…
  • La “política” es claramente una preocupación de los 2 Lehendakaris, mientras que no es destacada por los Reyes de España.
  • La palabra “paz” la repiten ambos Lehendakaris y no los reyes, y la palabra “vida” a la inversa, está muy presente en los discursos de los reyes pero no de los Lehendakaris.

Esté hincapié en determinados conceptos se muestra más graficamente si elaboramos las NUBES DE PALABRAS, resultantes de seleccionar los términos que cada gobernante ha utilizado en más de 6 ocasiones a lo largo de sus discursos. Los tamaños y colores de letra representan pesos de frecuencias relativas dentro de cada discurso:

Nubes de Palabras Rey y Lehendakari (Fuente: elaboración propia)
Nubes de Palabras Rey y Lehendakari (Fuente: elaboración propia)

Se observa un distinto estilo de comunicación entre los dirigentes españoles y vascos. Los lehendakaris presentan un estilo en el que abundan los términos muy reiterados, mientras que en el caso de los reyes, éstos concentran la insistencia en menos términos.

Por último, he querido hacer una pequeña prueba del funcionamiento de las herramientas de análisis de sentimiento. R dispone de diversos paquetes para ello, yo he usado Tidyverse y Tidytext, que presentan 3 lexicons que realizan una valoración “emocional” de los sentimientos que teóricamente generan las palabras utilizadas. Los lexicones son en inglés, por lo que he traducido directamente con google (R dispone también de paquetes específicos de traducción que utilizar APIs por ejemplo de microsoft, pero no he tenido tiempo de probarlos)  los discursos del 2017 y, sin realizar ninguna revisión de la calidad de la traducción (seguramente habría que refinar muchas expresiones y términos), le he pasado los diccionarios lexicon de BING y NRC a cada discurso, para observar qué tipo de emociones provoca cada uno.

He aquí el resultado resumido del peso de cada sentimiento en los discursos de 2017:

Análisis del sentimiento discursos Rey y Lehendakari (Fuente: elaboración propia)
Análisis del sentimiento discursos Rey y Lehendakari (Fuente: elaboración propia)

Por último, utilizando el lexicon de AFINN que valora numéricamente las palabras entre -5 y +5 según la negatividad o positividad de sentimientos generados, el resultado final es el siguiente, expresado en los correspondientes histogramas de frecuencia de presencia de cada tipo de valor emocional:

Nota: el número de palabras totales/únicas que se ha podido valorar (que después de ser traducido el discurso, estaban presentes en el lexicon) en cada caso ha sido de 85/53 para el Lehendakari y de 106/87.
Nota: el número de palabras totales/únicas que se ha podido valorar (que después de ser traducido el discurso, estaban presentes en el lexicon) en cada caso ha sido de 85/53 para el Lehendakari y de 106/87.

Se observa que el discurso del lehendakari se encuentra sesgado hacia la positividad mientras que el del Rey de España presenta más valores extremos, lo que resulta en un valor “emocional” medio de +1,06 sobre 5 en el caso del lehendakari y de un 0,49 sobre 5 en el caso de el Rey, resultados que corroboran el obtenido en la clasificación de términos anterior.

En resumen, que R es una herramienta que, una vez realizado el esfuerzo inicial imprescindible para adquirir la competencia mínima, presenta un enorme potencial de aplicación a casi cualquier necesidad o problema de análisis de datos que a una empresa se le pueda presentar, siendo un aliado muy interesante y recomendable para el desarrollo del business intelligence.

¿Qué lenguaje debemos utilizar para Data Science?

En este blog, ya hemos hablado con anterioridad de diferentes herramientas para emprender proyectos de analítica. Fue en esta entrada, comparando más allá a nivel de herramienta, cuando comparábamos R, Python y SAS, que son sobre las que pivotamos en nuestros Programas de Big Data.

El mundo de la analítica está avanzando a la velocidad de la luz, por lo que es importante que escribamos artículos volviendo a esa pregunta original sobre ¿Qué lenguaje utilizar para Data Science? No es una pregunta sencilla, porque las opciones existentes no son pocas.

La pregunta se vuelve más complicada aún en contextos como el nuestro. Tenemos que enseñar y aprender desde cero la disciplina de Data Science. Y una pregunta muy recurrente de parte de nuestros alumnos de Bilbao, Donostia y Madrid, es, ¿por qué lenguaje empieza para arrancar en este mundo del Big Data?

Son muchas los lenguajes que ofrecen las capacidades para ejecutar operaciones de análisis de datos de una manera más eficiente que los lenguajes tradicionales (C++, C, Java, etc.). Entre ellos, destacan algunos sospechosos habituales, y otros que están emergiendo con fuerza: R, Python, MATLAB, Octave y Julia. Éste es el menú en el que tenemos que elegir; decisión, como suele pasar con estas cuestiones, no sencilla. Dejo fuera de esta comparación soluciones analíticas como SAS, Stata o Excel, básicamente, porque no están orientadas a nivel de “lenguaje de programación”, sino a nivel de herramientas.

En esta entrada, y para poder encontrar un ganador, se han comparado los lenguajes en varias dimensiones: velocidad de ejecución, curva de aprendizaje requerida, capacidades de ejecutar acciones de analítica de datos, soporte a la visualización, entornos de desarrollo, facilidad de integración con otros lenguajes/aplicaciones y las oportunidades de trabajo existentes.

Comparación entre lenguajes

Obviamente, debemos notar que las calificaciones otorgadas en cada dimensión son la opinión de Siva Prasad, la persona que lo ha elaborado. Por lo tanto, creo que no debemos tampoco sacar conclusiones exclusivamente de ello. Creo que lo más ilustrativo del caso es fijarse en que en función de cuál sea el objetivo y la necesidad concreta, hay diferentes opciones que explorar.

Lo que sí me parece igualmente interesante, son la utilidad que puede tener en función del punto en el que cada uno se encuentre. El autor, en su entrada, destaca que:

If you are a graduate student, it’s good to start with Python

Si somos estudiantes de Grado, que estamos arrancando, sugiere emplear Python.

If you are a research scholar, good to start with R and explore Octave

Si estamos por la vía de la investigación/doctorado, sugiere el empleo de R y/o Octave.

If you are an employee, I suggest to master both Python and R

Si eres una persona ya trabajando en la industria, parece que las mejores apuestas pasan por Python y R.

If you are tech enthusiast and love exploring/learning new things, you can learn Julia

Si eres un entusiasta tecnológica y te gusta explorar/aprender nuevas cosas, métete con Julia (yo, estoy en esta etapa, haciendo modelos de optimización con Julia, que es realmente potente e interesante).

If the data needs to try several different algorithms, choose R

Si necesitamos probar diferentes algoritmos para tratar el conjunto de nuestros datos, prueba con R.

If you need to use data structures and integrate with external applications, use Python

Si tenemos que utilizar muchas estructuras de datos e integrar los mismos con aplicaciones externas, probemos con Python.

Para gustos están los colores. En definitiva, que no consideremos esto como conclusiones a escribir en un libro. Pero sí por lo menos, para orientarnos, y tener primeras aproximaciones a la ciencia de datos, Data Science, así como las opciones que abre cada uno de ellos. Disfruten de todos ellos :)

R vs. Python para el análisis de datos en proyectos de Big Data

Cuando abrimos este blog, dedicamos una entrada a comparar diferentes herramientas analíticas. En su día, hablamos de SAS, R y Python, mostrando la experiencia que tenía en el manejo de las tres de nuestro profesor Pedro Gómez. Desde entonces, han aparecido varias noticias y reflexiones comparando especialmente dos de ellas: R y Python. DataCamp publicó hace unos meses la infografía que ponemos al final de este artículo comparando ambas.

El análisis de datos, obviamente, es una parte nuclear de cualquier proyecto de Big Data. El análisis de los diferentes flujos de datos y su combinación para obtener nuevos patrones, tendencias, estructuras, etc. se puede realizar con diferentes herramientas y lenguajes de programación. La elección de estas últimas es una cuestión en muchas ocasiones de gustos, de preferencias, pero también en otras ocasiones, objeto de detallados análisis.

La infografía que hoy nos acompaña agrega múltiples fuentes que comparan R y Python. Por eso mismo, nos ha resultado interesante para compartir con vosotros. Compara ambos lenguajes desde una perspectiva de la Ciencia de Datos, o Data Science, disciplina que ya describimos en una entrada anterior.  Las debilidades y fortalezas que se muestran, así como sus ventajas y desventajas, puede ayudaros a la hora de seleccionar el mejor lenguaje de programación para vuestro problema dado. Y es que, como solemos decir, cada proyecto, cada problema, cada contexto de empresa, es diferente, por lo que dar sugerencias absolutas suele resultar complicado.

Dado que suele ser un factor bastante determinante, de entre las múltiples características para la toma de decisión, cabe destacar que ambos lenguajes gozan de una amplia comunidad de desarrollo. En este sentido, ninguna diferencia. Quizás lo que mejor caracteriza a cada uno de los lenguajes, es la frase que destacan los que elaboraran la infografía:

Python is often praised for being a general-purpose language with an easy-to-understand syntax and R’s functionality is developed with statisticians in mind, thereby giving it field-specific advantages such as great features for data visualization”

Os dejamos con la infografía para que podáis por vuestra seguir conociendo mejor cada uno de los dos: R vs. Python o Python vs. R. Seguiremos de cerca la evolución de ambos.

El scoring bancario en los tiempos del Big Data

Con este artículo vamos a abrir una serie de cinco artículos donde expondremos las cinco ponencias y sus preguntas asociadas del pasado workshop celebrado el 27 de Octubre en la Universidad de Deusto.

El workshop, titulado como “Aplicación del Big Data en sectores económicos estratégicos“,  tenía como principal objetivo mostrar la aplicación del Big Data en varios sectores estratégicos para la economía Española (finanzas, sector público, cultura, inversión y turismo). La primera de las intervenciones corrió a cargo de Jorge Monge, de Management Solutions, que nos expuso cómo elaborar un scoring financiero y su relevancia en la era del Big Data.

La revolución tecnológica se produce a magnitudes nunca antes observadas. El sector financiero no es ajeno a ese cambio, conjugando una reestructuración sin precedentes, con un cambio de perfil de usuario muy acusado. Así, se está pasando de la Banca Digital 1.0 a la 4.0, una innovación liderada por el cliente, y donde la analítica omnicanal con datos estructurados y no estructurados se torna fundamental.

La Banca Digital 4.0 (Fuente: Management Solutions)
La Banca Digital 4.0 (Fuente: Management Solutions)

Las entidades financieras, gracias a esta transformación digital, disponen de gran cantidad de información pública, con la que hacer perfiles detallados no solo a sus clientes actuales, sino también a sus clientes potenciales. Dado que la capacidad de procesamiento se ha visto multiplicado por las nuevas arquitecturas del Big Data, esto tampoco supone un problema. Los modelos de scoring (como el que Jorge expuso) pertenecen al ámbito de riesgos de las entidades bancarias, intentando clasificar a los clientes potenciales en función de su probabilidad de impago. Nos contó un proyecto real en el que con datos anonimizados de una cartera de 72.000 clientes potenciales, se mezclaron datos tradicionales de transacciones, con datos de redes sociales, para conformar un modelo analítico. Éste, conformado por variables significativas de cara a evaluar el incumplimiento, permitía mejorar el poder precitivo del scoring bancario.

El reto actual radica en la gran cantidad de datos. Jorge señaló cómo aunque se genere gran cantidad de información, esta no sería útil si no pudiera procesarse. Sin embargo, la capacidad de procesamiento se ha visto multiplicada por las nuevas arquitecturas de Big Data. Destacó, aquí, Hadoop, Hive, Pig, Mahout, R, Python, etc. Varias de las herramientas que ya comentamos en un post pasado.

Por último, destacaba, que el reto ya no es tecnológico. El reto es poder entender el procesamiento que hacen estas herramientas. Así, ha surgido un nuevo rol multidisciplinar para hacer frente a este problema: el data scientist, que integra conocimientos de tecnología, de programación, de matemáticas, de estadística, de negocio, etc. Hablaremos de este perfil más adelante. Y, cerraba la sesión, destacando la importancia de la calidad de la información, el reto que suponen las variables cualitativas y la desambiguación.

Os dejamos, para finalizar el artículo, la presentación realizada por Jonge Monge. Aprovechamos este artículo para agradecerle nuevamente su participación y aportaciones de valor.

Eligiendo una herramienta de Analítica: SAS, R o Python

(Artículo escrito por Pedro Gómez Tejerina, profesional del sector financiero, y profesor de nuestro Programa de Big Data y Business Intelligence)

Probablemente si estás leyendo este blog tengas un problema analítico que quieras resolver con datos. Es posible también que tengas unos conocimientos de estadística que quieras poner en práctica, así que es hora de elegir una herramienta analítica. Así que vamos a intentar orientaros en la elección, aunque las tres herramientas de analítica nos van a permitir hacer en general los mismos análisis:

  1. Conocimientos previos de programación. Si sabes programar y vienes de un entorno web, probablemente Python sea el más fácil de aprender. Es un lenguaje más generalista que los otros dos y solamente tendrás que aprender el uso de las librerías para hacer análisis de datos (Pandas, Numpy, Scipy, etc.). Si no es el caso y lo tuyo no es programar, SAS es más fácil de aprender que R, que es el lenguaje más diferente de los tres, dado su origen académico-estadístico.
  2. Herramientas User Friendly y GUI: Tanto SAS (SAS Enterprise Guide, SAS Enterprise Miner, SAS Visual Analytics) como R (Rattle, RStudio, Rcommander) tienen buenas interfaces visuales que pueden resolver problemas analíticos sin tener la necesidad de programar. Python dispone de menos (Orange), aunque dispone de una buena herramienta de enseñanza: los notebooks.
  3. Coste de las herramientas. SAS es un software comercial y bastante caro. Además el uso de cada una de sus capacidades se vende por paquetes, así que el coste total como herramienta analítica es muy caro. La parte buena es que tienes un soporte. Por el contrario, tanto R como Python son gratuitos, si bien es cierto que empresas como Revolution Analytics ofrecen soporte, formación y su propia distribución de R con un coste bastante inferior a SAS. Normalmente sólo las grandes empresas (bancos, compañías telefónicas, cadenas de alimentación, INE, etc.) disponen de SAS debido a su coste.
  4. Estabilidad de la herramienta. Al ser un software comercial, en SAS no hay problemas de compatibilidad de versiones. R al tener un origen académico ofrece distintas librerías para hacer un mismo trabajo y no todas funcionan en versiones anteriores de R. Para evitar estos problemas en una gran empresa recomendaría utilizar alguna distribución comercial de Revolution Analytics por ejemplo.
  5. Volumen de datos. Las única diferencia es que SAS almacena los datos en tu ordenador en vez de en memoria (R), si bien es cierto que las 3 tienen conexiones con Hadoop y las herramientas de Big Data.
  6. Capacidad de innovación. Si necesitas utilizar las últimas técnicas estadísticas o de Machine Learning SAS no es tu amigo. Es un software comercial que para garantizar la estabilidad de uso entre versiones retrasa la incorporación de nuevas técnicas. Aquí el líder es R seguido de Python.

Conclusión: no es fácil quedarse con una herramienta de analítica y las personas que trabajamos en grandes compañías estamos habituados a trabajar con varias. SAS ofrece soluciones integradoras a un coste elevado. R tiene muchas capacidades de innovación debido a su origen y Python tiene la ventaja de ser un lenguaje de programación generalista que además puede servir para hacer Data Mining o Machine Learning. La elección dependerá de lo que estés dispuesto a pagar y tus necesidades específicas. Yo tengo la suerte o desgracia de trabajar en una gran empresa, así que dispongo de las 3.

Tendencias en lo que a demanda de perfiles con conocimiento de R, SAS y Python se refiere (Fuente: http://www.statsblogs.com/2013/12/06/sas-is-abandoned-by-the-market-for-advanced-analytics/)
Tendencias en lo que a demanda de perfiles con conocimiento de R, SAS y Python se refiere (Fuente: http://www.statsblogs.com/2013/12/06/sas-is-abandoned-by-the-market-for-advanced-analytics/)

Más información en:

  • http://www.analyticsvidhya.com/blog/2014/03/sas-vs-vs-python-tool-learn/
  • http://blog.datacamp.com/r-or-python-for-data-analysis/