Archivo de la etiqueta: scoring

El uso del Machine Learning en las entidades financieras

(Artículo de nuestro profesor Pedro Gómez Tejerina)

Las entidades financieras han sido las pioneras tradicionalmente en utilizar el Data Mining y Machine Learning (ML). Y lo han aplicado principalmente en el núcleo de su negocio, la financiación. Cuando un cliente quiere solicitar un préstamo, el banco le solicita una determinada información (edad, estado civil, nivel de ingresos, domicilio, etc). En realidad el banco lo que ha hecho internamente ha sido analizar los datos históricos de los préstamos que tiene concedidos e intentar determinar la probabidad de que un cliente con determinadas características pueda impagar ese préstamo (a través de modelos de Machine Learning). Es lo que se denomina un scoring, y es el primer requisito que requiere una entidad financiera para conceder un préstamo a un cliente, que pase ese modelo de scoring (es decir, que no tenga una gran probabilidad de impago según ese modelo estimado).

Pero hay otras muchas otras áreas dentro de un banco donde se utiliza el ML. Ya comentamos en otro artículo cómo los departamentos de Marketing hacen un proceso similar para intentar predecir qué clientes podrían contratar en un futuro cercano un nuevo producto. Son los denominados modelos de propensión y la lógica es parecida al caso anterior. Analizar los datos históricos de contrataciones de productos para buscar clientes “similares” a los que anteriormente ya contrataron esos productos. Los clientes más parecidos a los que en el pasado contrataron un producto son a priori los que más probabilidad tienen de contratarlos en el futuro. A esos serán a los siguientes a los que les ofrecerán las ofertas comerciales.

Pero esto del ML tiene muchas más aplicaciones en una entidad financiera. Por ejemplo intentar detectar automáticamente operaciones (bien sean de tarjetas de crédito o transferencias) fraudulentas para evitar disgustos a sus clientes. O intentar predecir el uso en fin de semana de los cajeros automáticos de las oficinas para asegurarse de que no se quedan sin efectivo cuando los clientes vayan a retirarlo. O incluso a nivel organizativo re-estructurar la localización de sus oficinas físicas para atender mejor a sus clientes a través del análisis de los datos de las visitas de los mismos a las oficinas. Y todo esto por no hablar de los motores de recomendación de inversión, que analizan rentabilidades históricas de los activos financieros para ofrecer recomendaciones de inversión personalizadas a los clientes según el apetito de riesgo que estos tengan.

Todos estos ejemplos son tan sólo una muestra de las aplicaciones que el mundo del Data Mining y Machine Learning tienen en una entidad financiera, pero como os podéis imaginar, hay muchos más. La tendencia actual es enriquecer estos modelos con otro tipo de datos (redes sociales, Open Data, datos no estructurados…) para mejorar su capacidad predictiva. Aquí es donde entra en juego el Big Data.

Fuente: https://www.coursera.org/course/compfinance
Fuente: https://www.coursera.org/course/compfinance

El scoring bancario en los tiempos del Big Data

Con este artículo vamos a abrir una serie de cinco artículos donde expondremos las cinco ponencias y sus preguntas asociadas del pasado workshop celebrado el 27 de Octubre en la Universidad de Deusto.

El workshop, titulado como «Aplicación del Big Data en sectores económicos estratégicos«,  tenía como principal objetivo mostrar la aplicación del Big Data en varios sectores estratégicos para la economía Española (finanzas, sector público, cultura, inversión y turismo). La primera de las intervenciones corrió a cargo de Jorge Monge, de Management Solutions, que nos expuso cómo elaborar un scoring financiero y su relevancia en la era del Big Data.

La revolución tecnológica se produce a magnitudes nunca antes observadas. El sector financiero no es ajeno a ese cambio, conjugando una reestructuración sin precedentes, con un cambio de perfil de usuario muy acusado. Así, se está pasando de la Banca Digital 1.0 a la 4.0, una innovación liderada por el cliente, y donde la analítica omnicanal con datos estructurados y no estructurados se torna fundamental.

La Banca Digital 4.0 (Fuente: Management Solutions)
La Banca Digital 4.0 (Fuente: Management Solutions)

Las entidades financieras, gracias a esta transformación digital, disponen de gran cantidad de información pública, con la que hacer perfiles detallados no solo a sus clientes actuales, sino también a sus clientes potenciales. Dado que la capacidad de procesamiento se ha visto multiplicado por las nuevas arquitecturas del Big Data, esto tampoco supone un problema. Los modelos de scoring (como el que Jorge expuso) pertenecen al ámbito de riesgos de las entidades bancarias, intentando clasificar a los clientes potenciales en función de su probabilidad de impago. Nos contó un proyecto real en el que con datos anonimizados de una cartera de 72.000 clientes potenciales, se mezclaron datos tradicionales de transacciones, con datos de redes sociales, para conformar un modelo analítico. Éste, conformado por variables significativas de cara a evaluar el incumplimiento, permitía mejorar el poder precitivo del scoring bancario.

El reto actual radica en la gran cantidad de datos. Jorge señaló cómo aunque se genere gran cantidad de información, esta no sería útil si no pudiera procesarse. Sin embargo, la capacidad de procesamiento se ha visto multiplicada por las nuevas arquitecturas de Big Data. Destacó, aquí, Hadoop, Hive, Pig, Mahout, R, Python, etc. Varias de las herramientas que ya comentamos en un post pasado.

Por último, destacaba, que el reto ya no es tecnológico. El reto es poder entender el procesamiento que hacen estas herramientas. Así, ha surgido un nuevo rol multidisciplinar para hacer frente a este problema: el data scientist, que integra conocimientos de tecnología, de programación, de matemáticas, de estadística, de negocio, etc. Hablaremos de este perfil más adelante. Y, cerraba la sesión, destacando la importancia de la calidad de la información, el reto que suponen las variables cualitativas y la desambiguación.

Os dejamos, para finalizar el artículo, la presentación realizada por Jonge Monge. Aprovechamos este artículo para agradecerle nuevamente su participación y aportaciones de valor.