Archivo de la etiqueta: ibm

¿Cómo el Big Data puede cambiar la atención sanitaria en el Servicio Vasco de Salud?

(Artículo escrito por Izaskun Larrea, alumna de la promoción de 2017 en el Programa en Big Data y Business Intelligence en Bilbao)

Si desea averiguar cómo el Big Data está ayudando a conseguir un mundo mejor, no hay mejor ejemplo que los usos que se encuentran en la atención sanitaria.

La última década ha sido testigo de enormes avances en la cantidad de datos que habitualmente generamos y recopilamos, así como nuestra capacidad de utilizar la tecnología para analizarla y entenderla. La intersección de estas tendencias es lo que llamamos “Big Data” y está ayudando a las empresas de todas las industrias a ser más eficientes y productivas.

La asistencia sanitaria no es diferente. Además da mejorar los beneficios y reducir los gastos generales, Big Data en la atención sanitaria se utiliza para predecir epidemias, curar enfermedades, mejorar la calidad de vida y evitar muertes evitables. Con la población mundial en aumento y con la población cada día más longeva, los modelos de tratamiento están cambiando rápidamente, y muchas de las decisiones están siendo impulsadas por los datos. Actualmente, la necesidad es saber cada día más sobre los pacientes, desde que nacen –  recogiendo señales de advertencia de una enfermedad grave en una etapa suficientemente temprana para que el tratamiento sea más eficiente que si no hemos precedido los antecedentes del individuo.

Así que para crear un proyecto Big Data en la atención sanitaria, vamos a empezar por el principio – antes de que se detecte la enfermedad.

Pacientes que reciben el alta en hospitales
Pacientes que reciben el alta en hospitales

Es mejor prevenir que curar

Los teléfonos inteligentes fueron sólo el comienzo. Con las aplicaciones que les permiten ser utilizados como podómetros para medir cuánto caminas en un día, a los contadores de calorías para ayudarte a planificar tu dieta, millones de nosotros estamos utilizando la tecnología móvil para conseguir un estilo de vida saludable. Más recientemente, ha surgido un flujo constante de dispositivos portátiles dedicados como Fitbit, Jawbone y Samsung Gear Fit que permiten realizar un seguimiento de su progreso y cargar sus datos para ser recolectados junto con los demás datos.

En un futuro muy cercano, podremos utilizar estos datos con su médico quien lo utilizará como parte de su caja de herramientas de diagnóstico. Incluso aunque no esté enfermo, el acceso a las bases de datos de Big data, conseguir la información sobre el estado de la salud los pacientes de Osakidetza permitirá que los problemas sean afrontados antes de que ocurran, y se tomen decisiones terapéuticas o educativas, permitiendo que Osakidetza consiga información privilegiada.

Estos proyectos de Big Data, a menudo son creados por asociaciones entre profesionales médicos y de Big Data, con la prioridad de mirar hacia el futuro e identificar problemas antes de que sucedan. Un ejemplo recientemente creado es el proyecto Pittsburgh Health Data Alliance, que pretende tomar datos de diversas fuentes (tales como registros médicos y datos genéticos e incluso uso de medios sociales) para dibujar un cuadro completo del paciente.  Con el fin de ofrecer un paquete de atención médica adaptada.

Los datos de los pacientes no serán tratados aisladamente. Se comparará y analizará junto a  otros, destacando amenazas y problemas específicos a través de patrones que surgen durante el análisis. Esto permite que con este sofisticado modelo predictivo que se crea, un médico será capaz de evaluar el resultado probable de cualquier tratamiento que él o ella está considerando, respaldado por los datos de otros pacientes con las mismas condiciones, factores genéticos y estilo de vida.

Programas como este son el intento de la industria para hacer frente a uno de los mayores obstáculos en la búsqueda de la salud basada en Big Data: la industria médica recolecta una gran cantidad de datos, pero a menudo se encuentra en archivos y controlados por diferentes direcciones médicas, hospitales, clínicas, y los departamentos administrativos.

Otra asociación es entre Apple y IBM. Las dos compañías están colaborando en una gran plataforma de salud de datos que permitirá a los usuarios de iPhone y Apple Watch compartir datos con el Servicio de Salud Watson Health de IBM. El objetivo es descubrir nuevos conocimientos médicos a partir de cruzar en tiempo real la actividad y los datos biométricos de millones de pacientes potenciales.

En conclusión, existe un gran potencial para desarrollar una atención sanitaria más selectiva, de amplio alcance y eficiencia mediante la explotación del Big Data. Sin embargo, también se ha demostrado que el campo de la salud tiene algunas características muy específicas y desafíos que requieren de un esfuerzo dirigido y de la investigación para alcanzar todo su potencial.

La carrera hacia la ventaja competitiva en la era del dato: plataformas de Inteligencia Artificial y la derrota de la intuición humana

Ya va a hacer un año de lo que muchos bautizaron como uno de los principales hitos de la historia de la Inteligencia Artificial. Un algoritmo de inteligencia artificial de Google, derrotaba a Lee Sedol, hasta entonces el campeón mundial y mayor experto del juego “Go”. Un juego creado en China hace entre 2.000 y 3.000 años, y que goza de gran popularidad en el mundo oriental.

AlphaGo, el
AlphaGo, el “jugador inteligente” de Google derrotando a Lee Sedol, experto ganador del juego “Go” (Fuente: https://qz.com/639952/googles-ai-won-the-game-go-by-defying-millennia-of-basic-human-instinct/)

No era la primera vez que las principales empresas tecnológicas empleaban estos “juegos populares” para mostrar su fortaleza tecnológica y progreso. Todavía recuerdo en mi juventud, allá por 1997, ver en directo cómo Deep Blue de IBM derrotaba a mi ídolo Garry Kasparov. O como Watson, un sistema inteligente desarrollado también por IBM, se hizo popular cuando se presentó al concurso Jeopardy y ganó a los dos mejores concursantes de la historia del programa.

La metáfora de la “batalla” muchos la concebimos como la “batalla” del humano frente a la inteligencia artificial. La conclusión de la victoria de los robots parece clara: la inteligencia artificial podía ya con el instinto humano. Nuestra principal ventaja competitiva (esos procesos difícilmente modelizables y parametrizables como la creatividad, el instinto, la resolución de problemas con heurísticas improvisadas y subjetivas, etc.), se ponía en duda frente a las máquinas.

No solo desde entonces, sino ya tiempo atrás, las principales empresas tecnológicas, están corriendo en un entorno de competitividad donde disponer de plataformas de explotación de datos basadas en software de inteligencia artificial es lo que da competitividad a las empresas. Amazon, Google, IBM, Microsoft, etc., son solo algunas de las que están en esta carrera. Disponer de herramientas que permiten replicar ese funcionamiento del cerebro y comportamiento humano, ya hemos dicho en varias ocasiones, abre nuevos horizontes de creación de valor añadido.

¿Qué es una plataforma de inteligencia artificial? Básicamente un software que una empresa provee a terceras, que hace que éstas, dependan de la misma para su día a día. El sistema operativo que creó Microsoft (Windows) o el buscador que Alphabet creó en su día (Google), son dos ejemplos de plataformas. Imaginaros vuestro día a día sin sistema operativo o google (¿os lo imagináis?). ¿Será la inteligencia artificial la próxima frontera?

No somos pocos los que pensamos que así será. IBM ya dispone de Watson, que está tratando de divulgar y meter por todas las esquinas. Una estrategia bajo mi punto de vista bastante inteligente: cuanta más gente lo vea y use, más valor añadido podrá construir sobre la misma. Es importante llegar el primero.

Según IDC, para 2020, el despliegue masivo de soluciones de inteligencia artificial hará que los ingresos generados por estas plataformas pase de los 8.000 millones de dólares actuales a los más de 47.000 millones de dólares en 2020. Es decir, un crecimiento anual compuesto (CAGR), de más de un 55%. Estamos hablando de unas cifras que permiten vislumbrar la creación de una industria en sí mismo.

CAGR de los sistemas de inteligencia artificial y cognitivos (Fuente: http://www.idc.com/getdoc.jsp?containerId=prUS41878616)
CAGR de los sistemas de inteligencia artificial y cognitivos (Fuente: http://www.idc.com/getdoc.jsp?containerId=prUS41878616)

¿Y qué están haciendo las grandes tecnológicas? IBM, que como decíamos antes lleva ya tiempo en esto, creó en 2014, una división entera para explotar Watson. En 2015, Microsoft y Amazon han añadido capacidades de machine learning a sus plataformas Cloud respectivas. A sus clientes, que explotan esos servicios en la nube, les ayudan prediciendo hechos y comportamientos, lo que las aporta eficiencia en procesos. Un movimiento, bastante inteligente de valor añadido (siempre que se toque costes e ingresos que se perciben de manera directa, el despliegue y adopción de una tecnología será más sencillo). Google ha sacado en abierto (un movimiento de los suyos), TensorFlow, una librería de inteligencia artificial que pone a disposición de desarrolladores. Facebook, de momento usa todas las capacidades de análisis de grandes volúmenes de datos para sí mismo. Pero no será raro pensar que pronto hará algo para el exterior, a sabiendas que atesora uno de los mayores tesoros de datos (que esto no va solo de software, sino también de materias primas).

Según IDC, solo un 1% de las aplicaciones software del mundo disponen de características de inteligencia artificial. Por lo tanto, es bastante evidente pensar que su incorporación tiene mucho recorrido. En el informe que anteriormente decíamos, también vaticina que para ese 2020 el % de empresas que habrán incorporado soluciones de inteligencia artificial rondará el 50%.

Por todo ello, es razonable pensar que necesitaremos profesionales que sean capaces no solo de explotar datos gracias a los algoritmos de inteligencia artificial, sino también de crear valor sobre estos grandes conjuntos de datos. Nosotros, con nuestros Programas de Big Data, esperamos tener para rato. Esta carrera acaba de comenzar, y nosotros llevamos ya corriéndola un tiempo para estar bien entrenados. La intuición humana, no obstante, esperamos siga siendo difícilmente modelizable. Al menos, que podamos decirles a los algoritmos, qué deben hacer, sin perder su gobierno.