Archivo de la etiqueta: microsoft

Nuestro Alumni Iker Ezkerra, 10º clasificado en una competición de Big Data de Microsoft

El pasado miércoles 5 de Abril, tuvimos la ceremonia de entrega de diplomas de la promoción de 2016 de nuestro Programa de Big Data y Business Intelligence en la sede de Bilbao. Un total de 58 alumnos, a los que queremos extender nuestra felicitación desde aquí también.

Pero quizás, una de las mejores noticias que pudimos recibir ese día es que uno de esos 58, Iker Ezkerra, Alumni de dicha promoción, nos comunicó que había quedado 10º clasificado en una competición de Big Data que había organizado Microsoft. Concretamente en esta:

Competición Microsoft modelo concesión crediticio
Competición Microsoft modelo concesión crediticio

Una competición en la que el objetivo era desarrollar un modelo predictivo de eventuales impagos de clientes que solicitaban un préstamos hipotecario. Todo ello, utilizando tecnologías de Microsoft. Un reto interesante dado que la validación del modelo que cada participante desarrollaba, se realizaba con con 2 datasets que cada participante no conocía a priori. Se va escalando posiciones en el ranking en función del scoring que va obteniendo el modelo. ¿El resultado? El citado décimos puesto para Iker, además de obtener la certificación “Microsoft Professional Program Certificate in Data Science“.

Iker Ezkerra, décimo puesto competición Big Data Microsoft
Iker Ezkerra, décimo puesto competición Big Data Microsoft

Dentro de este proyecto, Iker tuvo que aprender un poco sobre la mecánica de concesión de créditos. Cuando solicitamos un préstamos hipotecario al banco, estas entidades financieras utilizan modelos estadísticos para determinar si el cliente va a ser capaz de hacer frente a los pagos o no. Las variables que influyen en esa capacidad de devolver el capital e intereses son muchos y complejos; ahí radica parte de la dificultad de esta competición, y donde Iker tuvo que trabajar mucho con los datos de origen para tratar de entender y acorralar bien a las variables que mejor podrían predecir el eventual “default” de un cliente.

Un total de 110.000 registros, para entrenar un modelo de Machine Learning. Por si alguien se anima en ver todo lo que pudo trabajar Iker, aquí os dejamos un enlace donde podréis encontrar el dataset. Y aquí los criterios de evaluación seguidos, que creo pueden ser interesantes para entender cómo funcionan este tipo de modelos predictivos.

Le pedí a Iker un breve párrafo describiendo su experiencia, dado que al final, nadie mejor que él para describirla. Y, muy amablemente, me envío esto, que para nosotros, desde Deusto Ingeniería, es un placer poder leer:

En los últimos meses del Programa en Big Data buscando documentación, formación y sobre todo datos que pudiese utilizar en un proyecto con el que poder poner en práctica los conocimientos que estaba adquiriendo me encontré con una Web esponsorizada por Microsoft en la que se ofrecen varios retos en los que poder poner en práctica tus conocimientos en análisis de datos. Estos retos ofrecen una visión bastante completa de lo que sería el ciclo de vida de un proyecto de análisis de datos como la limpieza del dataset, detección de outliers, normalización de datos, etc. Además algo que para mi ha sido muy interesante es que detrás de cada modelo que vas entrenando hay una “validación” de lo “bueno” que es tu modelo con lo que te sirve para darte cuenta de si tienes problemas de overfitting, limpieza de datos correcta, etc. Ya que por detrás de todo esto hay un equipo de gente que valida tu modelo con otros 2 datasets obteniendo un “score” que te permite ir escalando posiciones en una lista de competidores a nivel internacional.

Con todo esto y tras muchas horas de trabajo conseguí obtener la décima posición que para alguien que hace 1 año no sabía ni lo que era la KPI creo que no está nada mal :). Así que animo a todo el mundo con inquietudes en el mundo del dato a participar en este tipo de “competiciones” que te permiten poner a prueba los conocimientos que has adquirido y también a quitarte complejos en esta área de la informática que para algunos nos es nueva.

Felicidades, Zorionak, Congratulations, una vez más, Iker. Un placer poder disfrutar de vuestros éxitos en el mundo del Big Data.

La carrera hacia la ventaja competitiva en la era del dato: plataformas de Inteligencia Artificial y la derrota de la intuición humana

Ya va a hacer un año de lo que muchos bautizaron como uno de los principales hitos de la historia de la Inteligencia Artificial. Un algoritmo de inteligencia artificial de Google, derrotaba a Lee Sedol, hasta entonces el campeón mundial y mayor experto del juego “Go”. Un juego creado en China hace entre 2.000 y 3.000 años, y que goza de gran popularidad en el mundo oriental.

AlphaGo, el
AlphaGo, el “jugador inteligente” de Google derrotando a Lee Sedol, experto ganador del juego “Go” (Fuente: https://qz.com/639952/googles-ai-won-the-game-go-by-defying-millennia-of-basic-human-instinct/)

No era la primera vez que las principales empresas tecnológicas empleaban estos “juegos populares” para mostrar su fortaleza tecnológica y progreso. Todavía recuerdo en mi juventud, allá por 1997, ver en directo cómo Deep Blue de IBM derrotaba a mi ídolo Garry Kasparov. O como Watson, un sistema inteligente desarrollado también por IBM, se hizo popular cuando se presentó al concurso Jeopardy y ganó a los dos mejores concursantes de la historia del programa.

La metáfora de la “batalla” muchos la concebimos como la “batalla” del humano frente a la inteligencia artificial. La conclusión de la victoria de los robots parece clara: la inteligencia artificial podía ya con el instinto humano. Nuestra principal ventaja competitiva (esos procesos difícilmente modelizables y parametrizables como la creatividad, el instinto, la resolución de problemas con heurísticas improvisadas y subjetivas, etc.), se ponía en duda frente a las máquinas.

No solo desde entonces, sino ya tiempo atrás, las principales empresas tecnológicas, están corriendo en un entorno de competitividad donde disponer de plataformas de explotación de datos basadas en software de inteligencia artificial es lo que da competitividad a las empresas. Amazon, Google, IBM, Microsoft, etc., son solo algunas de las que están en esta carrera. Disponer de herramientas que permiten replicar ese funcionamiento del cerebro y comportamiento humano, ya hemos dicho en varias ocasiones, abre nuevos horizontes de creación de valor añadido.

¿Qué es una plataforma de inteligencia artificial? Básicamente un software que una empresa provee a terceras, que hace que éstas, dependan de la misma para su día a día. El sistema operativo que creó Microsoft (Windows) o el buscador que Alphabet creó en su día (Google), son dos ejemplos de plataformas. Imaginaros vuestro día a día sin sistema operativo o google (¿os lo imagináis?). ¿Será la inteligencia artificial la próxima frontera?

No somos pocos los que pensamos que así será. IBM ya dispone de Watson, que está tratando de divulgar y meter por todas las esquinas. Una estrategia bajo mi punto de vista bastante inteligente: cuanta más gente lo vea y use, más valor añadido podrá construir sobre la misma. Es importante llegar el primero.

Según IDC, para 2020, el despliegue masivo de soluciones de inteligencia artificial hará que los ingresos generados por estas plataformas pase de los 8.000 millones de dólares actuales a los más de 47.000 millones de dólares en 2020. Es decir, un crecimiento anual compuesto (CAGR), de más de un 55%. Estamos hablando de unas cifras que permiten vislumbrar la creación de una industria en sí mismo.

CAGR de los sistemas de inteligencia artificial y cognitivos (Fuente: http://www.idc.com/getdoc.jsp?containerId=prUS41878616)
CAGR de los sistemas de inteligencia artificial y cognitivos (Fuente: http://www.idc.com/getdoc.jsp?containerId=prUS41878616)

¿Y qué están haciendo las grandes tecnológicas? IBM, que como decíamos antes lleva ya tiempo en esto, creó en 2014, una división entera para explotar Watson. En 2015, Microsoft y Amazon han añadido capacidades de machine learning a sus plataformas Cloud respectivas. A sus clientes, que explotan esos servicios en la nube, les ayudan prediciendo hechos y comportamientos, lo que las aporta eficiencia en procesos. Un movimiento, bastante inteligente de valor añadido (siempre que se toque costes e ingresos que se perciben de manera directa, el despliegue y adopción de una tecnología será más sencillo). Google ha sacado en abierto (un movimiento de los suyos), TensorFlow, una librería de inteligencia artificial que pone a disposición de desarrolladores. Facebook, de momento usa todas las capacidades de análisis de grandes volúmenes de datos para sí mismo. Pero no será raro pensar que pronto hará algo para el exterior, a sabiendas que atesora uno de los mayores tesoros de datos (que esto no va solo de software, sino también de materias primas).

Según IDC, solo un 1% de las aplicaciones software del mundo disponen de características de inteligencia artificial. Por lo tanto, es bastante evidente pensar que su incorporación tiene mucho recorrido. En el informe que anteriormente decíamos, también vaticina que para ese 2020 el % de empresas que habrán incorporado soluciones de inteligencia artificial rondará el 50%.

Por todo ello, es razonable pensar que necesitaremos profesionales que sean capaces no solo de explotar datos gracias a los algoritmos de inteligencia artificial, sino también de crear valor sobre estos grandes conjuntos de datos. Nosotros, con nuestros Programas de Big Data, esperamos tener para rato. Esta carrera acaba de comenzar, y nosotros llevamos ya corriéndola un tiempo para estar bien entrenados. La intuición humana, no obstante, esperamos siga siendo difícilmente modelizable. Al menos, que podamos decirles a los algoritmos, qué deben hacer, sin perder su gobierno.