Archivo de la etiqueta: ética

La medicina personalizada como ejemplo del Big Data para la «economía de la personalización»

Hace unos meses (el Enero pasado), hablábamos de la medicina 5P.  El cruce entre la sanidad y el Big Data, donde aparecían conceptos y ventajas como la Personalización, Predicción, Prevención, Participación y Población. En términos de la personalización, decía lo siguiente:

Personalizada: el eterno sueño de la medicina. Poder dar un tratamiento singular al diagnóstico y necesidades concretas de cada uno de los pacientes. Con el Big Data, la cantidad ingente de datos, y el contexto que describe a cada uno de los pacientes, esto es posible. Solo es cuestión de “codificar” en datos lo que hasta ahora no hemos hecho, en cuestión de aspectos clínicos como estado de ánimo, emociones, expresión del dolor, etc.

La personalización de la prestación de un servicio es algo que ha venido inexorablemente ligado a esta era del Big Data. Si lo pensamos por un momento, tiene todo el sentido del mundo. Una reciente encuesta de Infosys, decía como el 78% de los consumidores estaría dispuesto a repetir la compra con una marca si se le personalizaba la propuesta de valor. Otro informe de RightNow Customer Impact, ilustraba la idea de la personalización desde la óptica de más ventas para una marca: un 86% de los consumidores estaría dispuesto a pagar más si la personalización se refería a sus necesidades.

Por lo tanto, hay margen y posibilidad de ganancia en la era de la personalización. Sin embargo, no es un proyecto fácil, por mucho que veamos muchos textos hablando de ello. Y es que hasta la fecha, nos costaba mucho personalizar los servicios por varias cuestiones:

  • No era rentable
  • El consumidor tampoco lo demandaba
  • No teníamos información para hacerlo

Pero ahora, estos tres elementos se desvanecen. Han cambiado. Las posibilidades ahora se multiplican, gracias a que con la ingente generación de datos, el reto está más relacionado con saber sacar valor de los datos que de no tener información para ello. Sin embargo, todavía queda mucho por hacer. Solo el 20% de las acciones de marketing llevan ligadas características de personalización. Esto es solo un ejemplo de un «área», donde la personalización tiene mucho que aportar.

Y más en el campo sanitario, donde las ineficiencias, o donde la no-personalización de la aplicación de algún fármaco, puede traer importantes consecuencias. Miremos la siguiente figura: 

Ineficiencia de algunos fármacos para determinadas poblaciones de pacientes (Fuente: http://www.knowledgedriven.com/media/55013/percent_of_patient_pop_for_which_a_drug_is_ineffective_500x425.jpg)
Ineficiencia de algunos fármacos para determinadas poblaciones de pacientes (Fuente: http://www.knowledgedriven.com/media/55013/percent_of_patient_pop_for_which_a_drug_is_ineffective_500x425.jpg)

En la entrada de la Wikipedia en Español, la definición de «Medicina Personalizada«, hace referencia a varias cuestiones que me parecen bastante ilustrativas de lo que hoy queremos hablar:

  • Administración de un fármaco o conjunto de fármacos más idóneos
  • En las dosis adecuadas para cada paciente concreto
  • A la vista de su individualidad química y genética
  • Se apoya tanto en el conocimiento de la naturaleza molecular de las enfermedades como en la individualidad química que posee cada paciente

Sin embargo, la entrada de la Wikipedia en Inglés ofrece otra serie de elementos que describen de una manera más global y multidimensional el concepto de «personalización», en este caso, para la medicina:

  • Modelo médico
  • Toma de decisiones y prácticas basadas en la personalización y las características individuales de cada paciente
  • Uso sistemático de información genética del paciente

Es decir, habla más de muchos de los elementos que hemos venido citando necesarios para los proyectos de Big Data: una buena materia prima, una transformación de los modelos (de negocio u organizativos), una toma de decisiones basada en la evidencia, etc. Y son cuestiones que vemos en nuestros Programas de Big Data, no solo para la medicina, sino también en otras cuestiones (ofertas publicitarias, planes de carrera personalizados, recomendaciones de productos en tiendas online, etc.). Por eso he señalado en negrita los aspectos más relacionados con esto de la «era de la personalización«.

El estado de adopción de la Medicina Personalizada (Fuente: http://www.photonics.com/images/Web/Articles/2010/9/1/thumbnail_44349.jpg)
El estado de adopción de la Medicina Personalizada (Fuente: http://www.photonics.com/images/Web/Articles/2010/9/1/thumbnail_44349.jpg)

Y todo esto, tiene aplicación en toda la cadena de valor del sector de la salud, no solo en la prestación médica. Y tiene aplicación en otros sectores. Porque el sector sanitario en cierto modo me recuerda a cuando el sector de las telecomunicaciones o las utilities pasó de un modelo de abonado a un modelo de cliente. Una transición que se hizo realmente mal (más allá de la privatización + poca liberalización de España). Los clientes, por el trato recibido, mostraron su poca satisfacción cambiando constantemente de operador (es un sector con un CHURN muy elevado), y ve estos servicios como commodities. Y por eso, también en nuestros programas de Big Data diseñamos y desarrollamos modelos predictivos de propensión a la fuga (CHURN).

En el sector sanitario, el concepto «Consumer Driven Healthcare» hace un poco referencia a todo ello. Los ciudadanos toman un rol activo en la gestión de su salud y están dispuestos a pagar por ello. Se le da: decisión, información y control. Y, de nuevo, hablamos de poner al cliente -el paciente en este caso- en el centro del proceso.

En todo esto, y como solemos concluir muchos artículos, nunca debemos abandonar la ética. Y menos en un campo tan sensible como es el sanitario.

Del Open Data al Linked Open Data: sacando valor de los datos enlazados

El Big Data, como nuevo paradigma de generación, procesamiento y extracción de conocimiento de los datos, facilita muchas oportunidades. Podemos medirlo prácticamente todo. Esto está dando lugar a diferentes movimientos, como el «Quantify Self«, que nos permite a cada uno de nosotros medir todo lo que hacemos (deporte, ingesta alimentos, horas de sueño, etc.).

Pero, el asunto central no es tanto ya medir, sino entender. Por eso, suelo decir que me gusta más hablar del «Understand Self«. Buscando en Google, veo que todavía no es un término que nadie haya acuñado ni capitalizado. Quizás porque no tiene mucho branding para la industria. Pero quizás podamos extrapolarlo a «Understand Things«. Es decir, que tenemos que cambiar el pensamiento desde la obsesión por el medir y el guardar, a una nueva obsesión: entender, procesar y sacar valor a los datos.

Pero esto no es sencillo. Especialmente, porque los datos brutos son poco expresivos. Necesitamos dar contexto a los datos. ¿Para qué sirve los diez kilómetros o las 1.000 calorias que has ingerido hoy? ¿Para que sirve que una empresa capte 1.000 nuevos leads o tenga más de 200 Likes? Medir está bien, pero hay que dar un paso más allá.

Por todo ello, es importante no confundir datos con información y conocimiento. Si nadie es capaz de analizar la cantidad de datos que generamos, es mejor considerarlo como basura digital. Según un estudio de EMC, en 2013 sólo el 22% de los datos del universo digital fueron útiles, y sólo el 5% de los ellos fueron analizados. A esto me refería al inicio de este artículo.

Supongo que ya habrán visto en innumerables ocasiones la representación estructural entre los Datos, la Información, el Conocimiento, y cada vez más, la Sabiduría. Me refiero a esta representación:

Pirámide Datos - Información - Conocimiento - Sabiduría (Fuente: http://legoviews.com/2013/04/06/put-knowledge-into-action-and-enhance-organisational-wisdom-lsp-and-dikw/)
Pirámide Datos – Información – Conocimiento – Sabiduría (Fuente: http://legoviews.com/2013/04/06/put-knowledge-into-action-and-enhance-organisational-wisdom-lsp-and-dikw/)

Representa las relaciones estructurales entre Datos, Información, Conocimiento y Sabiduría. La información son datos con cierto sentido significado, el Conocimiento, es Información y contexto, y la Sabiduría, es Conocimiento aplicado. Hasta aquí, entiendo que no aportamos mucha novedad a lo ya conocido.

Pero, lo que sí creemos que aporta es hacer una reflexión sobre esta pirámide cuando hablemos en entornos del sector público y agentes privados con cada vez mayor conversación e implicación con sus agentes (el fenómeno de la transparencia y la participación).

Son numerosas las iniciativas de Open Data que existen en la actualidad. En España, especialmente impulsadas por la Ley de Transparencia y todas las referencias que dicha normativa hace respecto a la apertura de conocimiento. El problema suele radicar en que nos hemos centrado mucho en hacer un ejercicio de aperturaOpen«), dejando de lado el objetivo último de la utilidad del dato en contextos y aplicaciones (es decir, pasar del dato bruto a conocimiento aplicado). Los beneficios vinculados a este movimiento (transparencia y rendición de cuentas, mejora en la toma de decisiones y promoción de una ciudadanía activa, eficiencia operativa, valor económico, etc.), son claros. Pero, ¿alguien conoce alguna medición objetiva y crítica sobre si realmente estamos alcanzado alguno de esos objetivos?

En todo ello, vemos dos asuntos que debieran pensarse más: 1) Las dificultades para hacer progresos en términos de usabilidad y utilidad de ese bien público que es el dato; y 2) El riesgo de dar más poder a los que ya lo tienen y acrecentar las desigualdades.

En cuanto al punto 1), cabe destacar aquí el fenómeno que en otros países se está viviendo respecto a la migración del «mero» Open Data, al «Open Linked Data». Los datos, cuanto más enlazados y conectados, más valor y utilidad adquieren.  Existen varias disciplinas habilitadoras como la computación y codificación del conocimiento, las redes, la computación ubicua, el almacenamiento de datos, etc.. Todas ellas, creciendo a un ritmo vertiginoso. El origen y el despliegue de datos es muy considerable, y son generados por sistemas de vigilancia y control (smart metering, control de tráfico), por dispositivos digitales (desde smartphones a cámaras), sensores activos y pasivos, escáner y las diferentes versiones de los datos voluntarios (a través de transacciones, interacciones en redes sociales, sousveillance, sistemas de crowdsourcing y ciencia ciudadana), etc.

¿Cómo juntamos todo eso y le damos una utilidad y una usabilidad a la ciudadanía? A través del enlazamiento. Una capa semántica que dé significado a todos esos datos, y que haga que los datos se entiendan entre sí, y que por consiguiente, las máquinas entiendan a los datos. Esto acelera las capacidades y multiplica las posibilidades a los que quieran sacar usabilidad de todos ellos. Big Data no puede no ser Semantic Big Data. Se trata de hacer que las máquinas entiendan nuestro lenguaje para así procesarlo mejor y ofrecer soluciones más afinadas a nuestros problemas. Crear un hub del conocimiento donde todo esté conectado y bien estructurado. Es decir, pasar al Linked Open Data.

Open Linked Data (Fuente: https://en.wikipedia.org/wiki/Linked_open_data)
Open Linked Data (Fuente: https://en.wikipedia.org/wiki/Linked_open_data)

Y la representación sobre estas líneas trabaja en favor de todo ello. Vemos como ya son muchas las organizaciones que publican datos y los enlazan a una gran red de datasets conectados. Tim Berners-Lee, el inventor de la Web e iniciador de los Datos Enlazados (Linked Data), sugirió un esquema de desarrollo de 5 estrellas para Datos Abiertos.

Esquema de cinco estrellas para datos abiertos (Fuente: http://5stardata.info/es/)
Esquema de cinco estrellas para datos abiertos (Fuente: http://5stardata.info/es/)

★ publica tus datos en la Web (con cualquier formato) y bajo una licencia abierta (un PDF colgado en una web, algo muy habitual en nuestro entorno)
★★ publícalos como datos estructurados (un Excel en vez de una imagen de una tabla escaneada, también bastante habitual)
★★★ usa formatos no propietarios (CSV en lugar de Excel, que ya cuesta ver en el entornos)
★★★★ usa URIs para denotar cosas, así la gente puede apuntar a estas
★★★★★ enlaza tus datos a otros datos para proveer contexto

Creo y espero, que en los próximos años, avancemos más hacia esa web de datos enlazados y abiertos.

Respecto a 2), el riesgo de dar más poder a los que ya lo tienen y acrecentar las desigualdades. En relación a todo ello, me he terminado recientemente de leer el libro «The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences» de Rob Kitchin.  Desde el primer capítulo, este formidable autor se centra en el significado epistemológico de la pirámide DIKW (Data-Information-Knowledge-Wisdom), para afrontar con una mirada crítica, los datos en términos económicos, técnicos, éticos, políticos o filosóficos, con un posicionamiento claro desde el inicio:

“[…] how data are ontologically defined and delimited is not a neutral, technical process, but a normative, political, and ethical one that is often contested and has consequences for subsequent analysis, interpretation and action”.

Esta idea deque el Big Data lo tenemos que sacar de un debate puramente técnico, y llevarlo a otras disciplinas, está cada vez más extendido. Se trata de darle sentido multidimensional a un nuevo paradigma que tiene ideología, normativa, valor económico, etc. Por lo tanto, es susceptible de generar desigualdad, por lo que requiere de intervención pública para mantener nuestros estados sociales de derecho. Es algo que Kitchin no para de destacar a lo largo de todo el libro. Y es algo que tiene mucho que ver con el Linked Open Data; una filosofía marcadamente comunitaria y de generación de riqueza conjunta que puede ayudar en todo ello. Nuestro compañero Diego López-de-Ipiña lleva hablando de esto desde hace ya mucho tiempo (pueden ver sus presentaciónes en su canal de SlideShare).

Esto, que en el mundo del análisis del dato en empresas privadas es importante, más  lo es aún cuando la reflexión se extiende al ámbito público, cuyos socios-dueños-accionistas, somos todos, y no siempre ejercemos como tal con una postura crítica y responsable. El Linked Open Data nos permitirá pasar, de manera efectiva y social, del dato en bruto, al conocimiento colectivo.