Archivo de la etiqueta: matemáticas

¿Qué hace un «Científico de datos» y por qué es una profesión tan sexy?

Mucho se ha escrito la que aparentemente va a ser la profesión más sexy del Siglo XXI. Más allá de titulares tan rimbonbantes (digo yo, que quedan muchas cosas todavía que inventar y hacer en este siglo :-), lo que viene a expresar esa idea es la importancia que va a tener un científico de datos en una era de datos ubicuos, coste de almacenamiento, procesamiento y transporte prácticamente cero y de constante digitalización. La práctica moderna del análisis de datos, lo que popularmente y muchas veces erróneamente se conoce como «Big Data», se asienta sobre lo que es la «Ciencia del Dato» o «Data Science».

En 2012, Davenport y Patil escribían un influyente artículo en la Harvard Business Review en la que exponían que el científico de datos era la profesión más sexy del Siglo XXI. Un profesional que combinando conocimientos de matemáticas, estadística y programación, se encarga de analizar los grandes volúmenes de datos. A diferencia de la estadística tradicional que utilizaba muestras, el científico de datos aplica sus conocimientos estadísticos para resolver problemas de negocio aplicando las nuevas tecnologías, que permiten realizar cálculos que hasta ahora no se podían realizar.

Y va ganando en popularidad en los últimos años debido sobre todo al desarrollo de la parte más tecnológica. Las tecnologías de Big Data empiezan a posibilitar que las empresas las adopten y empiecen a poner en valor el análisis de datos en su día a día. Pero, ahí, es cuando se dan cuenta que necesitan algo más que tecnología. La estadística para la construcción de modelos analíticos, las matemáticas para la formulación de los problemas y su expresión codificada para las máquinas, y, el conocimiento de dominio (saber del área funcional de la empresa que lo quiere adoptar, el sector de actividad económica, etc. etc.), se tornan igualmente fundamentales.

Pero, si esto es tan sexy ¿qué hace el científico de datos? Y sobre todo, ¿qué tiene que ver esto con el Big Data y el Business Intelligence? Para responder a ello, me gusta siempre referenciar en los cursos y conferencias la representación en formato de diagrama de Venn que hizo Drew Conway en 2010:

Diagrama de Venn del
Diagrama de Venn del «Científico de datos» (Fuente: Drew Conway)

Como se puede apreciar, se trata de una agregación de tres disciplinas que se deben entender bien en este nuevo paradigma que ha traído el Big Data:

  • «Hacking skills» o «competencias digitales con pensamiento computacional«: sé que al traducirlo al Español, pierdo mucho del significado de lo que expresa las «Hacking Skills». Pero creo que se entiende bien también lo que quieren decir las «competencias digitales». Estamos en una época en la que constante «algoritmización» de lo que nos rodea, el pensamiento computacional que ya hay países que han metido desde preescolar, haga que las competencias digitales no pasen solo por «saber de Ofimática» o de «sistemas de información». Esto va más de tener ese mirada hacia lo que los ordenadores hacen, cómo procesan datos y cómo los utilizan para obtener conclusiones. Yo a esto lo llamo «Pensamiento computacional», como una (mala) traducción de «Computation thinking», que junto con las competencias digitales (entender lo que hacen las herramientas digitales y ponerlo en práctica), me parecen fundamentales.
  • Estadística y matemáticas: en primer lugar, la estadística, que es una herramienta crítica para la resolución de problemas. Nos dota de unos instrumentos de trabajo de enorme valor para los que trabajamos con problemas de la empresa. Y las matemáticas, ay, qué decir de la ciencia formal por antonomasía, la que siguiendo razonamientos lógicos, nos permite estudiar propiedades y relaciones entre las variables que formarán parte de nuestro problema. Si bien las matemáticas se la ha venido a conocer como la ciencia exacta, en la estadística, nos gusta más jugar con intervalos de confianza  y la incertidumbre. Pero, por sus propias particularidades, se nutren mutuamente, y hace que para construir modelos analíticos que permitan resolver los problemas que las empresas y organizaciones nos planteen, necesitemos ambas dos.
  • Conocimiento del dominio: para poder diseñar y desarrollar la aplicación del análisis masivo de datos a diferentes casos de uso y aplicación, es necesario conocer el contexto. Los problemas se deben plantear acorde a estas características. Como siempre digo, esto del Big Data es más una cuestión de plantar bien los problemas que otra cosa, por lo que saber hacer las preguntas correctas con las personas que bien conocen el dominio de aplicación es fundamental. Por esto me suelo a referir a «que hay tantos proyectos de Big Data como empresas».  Cada proyecto es un mundo, por lo que cuando alguien te cuente su proyecto, luego relativízalo a tus necesidades 😉

Estas tres cuestiones (informática y computación, métodos estadísticos y áreas de aplicación/dominio), también fueron citadas por William S. Cleveland en 2001 en su artículo «Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics«. Por lo tanto, no es una concepción nueva.

Este Diagrama de Venn ha ido evolucionando mucho. Uno de los que más me gustan es éste, que integra las ciencias sociales. Nuestro Programa Experto en Análisis, Investigación y Comunicación de Datos precisamente busca ese enfoque.

La cuarta Burbuja de la Ciencia de Datos: Ciencias Sociales (Fuente: http://datascienceassn.org/content/fourth-bubble-data-science-venn-diagram-social-sciences)
La cuarta Burbuja de la Ciencia de Datos: Ciencias Sociales (Fuente: http://datascienceassn.org/content/fourth-bubble-data-science-venn-diagram-social-sciences)

Por qué hablamos del Business Analytics y no solo de Business Intelligence

El Business Intelligence (Inteligencia de Negocios) es un conjunto de métodos y técnicas que han venido empleándose desde hace años en diferentes sectores para ayudar en la toma de decisiones. Básicamente consiste en el procesamiento de datos para obtener información resumida y sintetizada de todos ellos.

Lo que ha ocurrido es que en los últimos años ha aparecido un nuevo paradigma, que hemos venido a denominar Big Data. Un paradigma que se puede describir por sus cinco elementos que lo caracterizan: Volumen (gran cantidad de datos), Variedad (diferentes formatos, estructuras, etc. de datos), Velocidad (gran velocidad a la que los generemos), Variabilidad (datos no muy estáticos, sino que cambian con cierta frecuencia) y Valor (el gran potencial de generación de valor que tienen para las organizaciones).

Las cinco V del Big Data (Fuente: http://boursinos.gr/wp-content/uploads/sites/8/2014/02/bigdata-v5-lens.jpg)
Las cinco V del Big Data (Fuente: http://boursinos.gr/wp-content/uploads/sites/8/2014/02/bigdata-v5-lens.jpg)

Este nuevo paradigma, junto con los métodos avanzados de procesamiento estadístico y matemático (incertidumbre y exactitud) de datos, enriquecen y permiten una toma de decisiones aún más estratégica e informada. Ahora, una empresa no solo puede resumir el pasado (enfoque Business Intelligence), sino que también puede establecer relaciones y comparaciones entre variables para tratar de adelantarse al futuro (Business Analytics).

Business Analytics vs. Business Intelligence (Fuente: https://wiki.smu.edu.sg/is101_2012/img_auth.php/e/ec/Business_Analytics.jpg)
Business Analytics vs. Business Intelligence (Fuente: https://wiki.smu.edu.sg/is101_2012/img_auth.php/e/ec/Business_Analytics.jpg)

Es decir, que evolucionamos del Business Intelligence tradicional al Business Analytics gracias al nuevo paradigma que trae el Big Data y los métodos de procesamiento de datos más avanzados. Con estos servicios de Business Analytics, básicamente, a una compañía, lo que podemos ofrecerle son dos tipos de explotaciones de datos:

  • Informar: ver lo que ha ocurrido en el pasado, y tomar decisiones reactivas (Business Intelligence).
  • Predecir: inferir lo que puede ocurrir en el pasado, y tomar decisiones proactivas (Business Analytics)

A partir de estos principios básicos de lo que el Business Analytics es, ya pueden ustedes imaginarse el gran potencial que tiene. Como decía al comienzo, el Business Analytics trae una inteligencia a los negocios enriquecido a través de modelos estadísticos que permiten descubrir nuevas estructuras, patrones, relaciones entre variables, etc. Esto, sumado a la era de la ingente cantidad de datos, hace que las compañías se puedan beneficiar de todo ello en muchas áreas: sanidad, educación, marketing, producción, logística, etc.

Para que se hagan ustedes a la idea, y puedan llevarlo a un plano práctico de su día a día, puede responder a preguntas como:

  • ¿Cómo puedo descubrir más información relevante sobre mis clientes? Datos como los drivers que le llevan realmente a comprar, cómo se relacionan mis clientes entre ellos, qué opiniones son las que han sido clave para la toma de decisión de compra, etc.
  • ¿Qué pasaría si cambio el precio de mis productos/servicios? Es decir, disponer de un análisis de sensibilidad de una variable (precio) respecto a su impacto en otra (ventas totales de ese producto o sobre otros), de manera que puedo ver la relación entre las mismas.
  • ¿Cómo puedo reducir la tasa de abandonos de mis clientes? Es decir, construir un modelo de propensión a la fuga, para saber qué puntos o acciones son las que pueden llevar a un cliente a abandonarme. De esta manera, a futuro, tendría más probabilidad de encontrar clientes que pudieran marcharse de la compañía.
  • ¿Cómo puedo identificar a los clientes más rentables? No desde el punto de vista de las ventas totales, sino del valor que extraigo de cada uno de ellos (entendiendo valor como margen de beneficio)
  • ¿Cómo puedo detectar fraude? Analizando el histórico de valores que van tomando las variables para los casos de éxito (no hay fraude, se paga a tiempo, no hay insolvencias, etc.) y los de fracaso (fraudes, impagos, etc.), se pueden construir modelos que relacionen las variables que frecuentemente están asociados a los casos de fracaso, y así poder anticiparse a futuro.
  • etc.

Para poder hacer esto, como pueden imaginarse, los métodos de descubrimiento de información resultan fundamentales. Bueno, partiendo de la base que lo más importante es que tengamos bien preprocesada nuestra información, porque sin eso, cualquier algoritmo fallará. Esto es precisamente lo que hablamos al introducir los ETL y la importancia de la calidad de datos y su preprocesado.

Los métodos a utilizar son variados y a veces uno no sabe cuál de ellos va a dar mejores resultados o cuál de ellos se adecúa a lo que yo realmente estoy buscando. En el blog Peekaboo publicaron un cheat sheet (una «chuleta» de toda la vida) que utilizo siempre en los cursos introductorios a Business Analytics, dado que es bastante expreisva.

Selección de la técnica de tratamiento de datos más adecuada (Fuente: http://1.bp.blogspot.com/-ME24ePzpzIM/UQLWTwurfXI/AAAAAAAAANw/W3EETIroA80/s1600/drop_shadows_background.png)
Selección de la técnica de tratamiento de datos más adecuada (Fuente: http://1.bp.blogspot.com/-ME24ePzpzIM/UQLWTwurfXI/AAAAAAAAANw/W3EETIroA80/s1600/drop_shadows_background.png)

Más que una chuleta, es un flujograma que terminará en el método que deberíamos utilizar para el objetivo que perisgamos. Como podéis ver, simplemente navegando por las preguntas que se van realizando a través del flujograma, puedo llegar yo a saber qué familia de tratamiento de datos es la más adecuada para los objetivos que persigo.

Como podéis comprobar, el punto de partida es tener una muestra de 50 instancias/observaciones. A partir de ahí, o bien debemos buscar más, o bien poder seguir navegando hasta encontrar el método más adecuado. ¿Qué buscamos?

  • ¿Predecir una cantidad numérica? Aquí los métodos de regresión serán tu solución.
  • ¿Predecir una categoría? Los clasificadores pueden servir para alcanzar estos objetivos.
  • ¿Agrupar mis instancias/observaciones por un comportamiento común? Las técnicas de clusterización me permiten a mí agrupar observaciones por patrones similares.
  • ¿Observando la estructura de mi conjunto de datos? Las técnicas de reducción de la dimensionalidad son las que me pueden servir para este objetivo.

En definitiva, ya podéis observar cómo la ayuda a la toma de decisiones estratégicas (el Business Intelligence tradicional), se ha visto enriquecido gracias a dos nuevas dimensiones: una tecnológica (el Big Data) y otra matemática/estadística. ¿A qué esperas para sacar valor del Business Analytics en tu organización?